|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- rhymes-ai/Aria-sequential_mlp |
|
- rhymes-ai/Aria |
|
pipeline_tag: image-text-to-text |
|
library_name: transformers |
|
--- |
|
# Aria-sequential_mlp-FP8-dynamic |
|
FP8-Dynamic quantization from [Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp) made with [llm-compressor](https://github.com/vllm-project/llm-compressor), requires about 30 GB of VRAM. |
|
|
|
### Installation |
|
``` |
|
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow compressed-tensors |
|
pip install flash-attn --no-build-isolation |
|
``` |
|
|
|
### Inference |
|
Run this model with: |
|
``` python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModelForCausalLM, AutoProcessor, BitsAndBytesConfig |
|
torch.cuda.set_device(0) |
|
|
|
model_id_or_path = "thwin27/Aria-sequential_mlp-bnb_FP8-dynamic" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True) |
|
|
|
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png" |
|
|
|
image = Image.open(requests.get(image_path, stream=True).raw) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"text": None, "type": "image"}, |
|
{"text": "what is the image?", "type": "text"}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template(messages, add_generation_prompt=True) |
|
inputs = processor(text=text, images=image, return_tensors="pt") |
|
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype) |
|
inputs = {k: v.to(model.device) for k, v in inputs.items()} |
|
|
|
with torch.inference_mode(), torch.amp.autocast("cuda", dtype=torch.bfloat16): |
|
output = model.generate( |
|
**inputs, |
|
max_new_tokens=500, |
|
stop_strings=["<|im_end|>"], |
|
tokenizer=processor.tokenizer, |
|
do_sample=True, |
|
temperature=0.9, |
|
) |
|
output_ids = output[0][inputs["input_ids"].shape[1]:] |
|
result = processor.decode(output_ids, skip_special_tokens=True) |
|
|
|
print(result) |
|
print(f'Max allocated memory: {torch.cuda.max_memory_allocated(device="cuda") / 1024 ** 3:.3f}GiB') |
|
``` |
|
|
|
### Quantization |
|
```python |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot |
|
|
|
model_name = "rhymes-ai/Aria-sequential_mlp" |
|
|
|
model = SparseAutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True) |
|
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
recipe = QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_tower.*"], |
|
) |
|
|
|
folder = model_name.split("/")[1] + "-FP8-Dynamic" |
|
oneshot(model=model, recipe=recipe, output_dir=folder) |
|
processor.save_pretrained(folder) |
|
``` |