about evaluating on humaneval
#33
by
dongZheX
- opened
I launch falcon-40b, and use helm to evaluate humaneval.
- How I launch falcon-40b
tokenizer = AutoTokenizer.from_pretrained(args.ckpt_dir, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.ckpt_dir, trust_remote_code=True,device_map="auto",torch_dtype=torch.bfloat16)
model.eval()
lock = threading.Lock()
app = FastAPI()
class Config(BaseModel):
prompts: List[str]
max_gen_len: int
temperature: float = 0.8
top_p: float = 0.95
stop_sequences: List[str]
top_k_per_token: int = 1
repetition_penalty: float = 1
length_penalty: float = 1
@app
.post("/generate")
async def create_item(config: Config):
lock.acquire()
try:
global pipleline, tokenizer
prompts = config.prompts
max_new_tokens = config.max_gen_len
top_p = config.top_p
temperature = config.temperature
inputs = tokenizer.encode(prompts[0], return_tensors="pt").cuda()
print(inputs)
attention_mask = torch.ones(inputs.shape).cuda()
outputs = model.generate(inputs,max_new_tokens=max_new_tokens,
num_beams=1,
attention_mask=attention_mask,
top_p=top_p,
temperature=temperature,
repetition_penalty=config.repetition_penalty,
length_penalty=config.length_penalty,
do_sample=False if temperature == 0 else True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0, inputs.shape[1]:], skip_special_tokens=True)
now = datetime.datetime.now()
time = now.strftime("%Y-%m-%d %H:%M:%S")
answer = {
"completions": [
{
"text":response
}
],
}
return answer
finally:
lock.release()
When I input:
from typing import List
def below_zero(operations: List[int]) -> bool:
""" You're given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False.
>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""
The model can decode normally.
But when I append a "\n" in the end of input code:
from typing import List
def below_zero(operations: List[int]) -> bool:
""" You're given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False.
>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""
# empty line here
it will decode nothing.
I would like to ask what caused this problem?
dongZheX
changed discussion title from
about evaluate on humaneval
to about evaluating on humaneval