timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
3ca3bfe
1 Parent(s): 823fc75
Files changed (4) hide show
  1. README.md +124 -0
  2. config.json +35 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: mit
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for repghostnet_050.in1k
11
+
12
+ A RepGhostNet image classification model. Trained on ImageNet-1k by paper authors.
13
+
14
+ ## Model Details
15
+ - **Model Type:** Image classification / feature backbone
16
+ - **Model Stats:**
17
+ - Params (M): 2.3
18
+ - GMACs: 0.0
19
+ - Activations (M): 2.0
20
+ - Image size: 224 x 224
21
+ - **Papers:**
22
+ - RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization: https://arxiv.org/abs/2211.06088
23
+ - **Original:** https://github.com/ChengpengChen/RepGhost
24
+ - **Dataset:** ImageNet-1k
25
+
26
+ ## Model Usage
27
+ ### Image Classification
28
+ ```python
29
+ from urllib.request import urlopen
30
+ from PIL import Image
31
+ import timm
32
+
33
+ img = Image.open(urlopen(
34
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
35
+ ))
36
+
37
+ model = timm.create_model('repghostnet_050.in1k', pretrained=True)
38
+ model = model.eval()
39
+
40
+ # get model specific transforms (normalization, resize)
41
+ data_config = timm.data.resolve_model_data_config(model)
42
+ transforms = timm.data.create_transform(**data_config, is_training=False)
43
+
44
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
45
+
46
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
47
+ ```
48
+
49
+ ### Feature Map Extraction
50
+ ```python
51
+ from urllib.request import urlopen
52
+ from PIL import Image
53
+ import timm
54
+
55
+ img = Image.open(urlopen(
56
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
57
+ ))
58
+
59
+ model = timm.create_model(
60
+ 'repghostnet_050.in1k',
61
+ pretrained=True,
62
+ features_only=True,
63
+ )
64
+ model = model.eval()
65
+
66
+ # get model specific transforms (normalization, resize)
67
+ data_config = timm.data.resolve_model_data_config(model)
68
+ transforms = timm.data.create_transform(**data_config, is_training=False)
69
+
70
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
71
+
72
+ for o in output:
73
+ # print shape of each feature map in output
74
+ # e.g.:
75
+ # torch.Size([1, 8, 112, 112])
76
+ # torch.Size([1, 12, 56, 56])
77
+ # torch.Size([1, 20, 28, 28])
78
+ # torch.Size([1, 40, 14, 14])
79
+ # torch.Size([1, 80, 7, 7])
80
+
81
+ print(o.shape)
82
+ ```
83
+
84
+ ### Image Embeddings
85
+ ```python
86
+ from urllib.request import urlopen
87
+ from PIL import Image
88
+ import timm
89
+
90
+ img = Image.open(urlopen(
91
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
92
+ ))
93
+
94
+ model = timm.create_model(
95
+ 'repghostnet_050.in1k',
96
+ pretrained=True,
97
+ num_classes=0, # remove classifier nn.Linear
98
+ )
99
+ model = model.eval()
100
+
101
+ # get model specific transforms (normalization, resize)
102
+ data_config = timm.data.resolve_model_data_config(model)
103
+ transforms = timm.data.create_transform(**data_config, is_training=False)
104
+
105
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
106
+
107
+ # or equivalently (without needing to set num_classes=0)
108
+
109
+ output = model.forward_features(transforms(img).unsqueeze(0))
110
+ # output is unpooled, a (1, 480, 7, 7) shaped tensor
111
+
112
+ output = model.forward_head(output, pre_logits=True)
113
+ # output is a (1, num_features) shaped tensor
114
+ ```
115
+
116
+ ## Citation
117
+ ```bibtex
118
+ @article{chen2022repghost,
119
+ title={RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization},
120
+ author={Chen, Chengpeng, and Guo, Zichao, and Zeng, Haien, and Xiong, Pengfei and Dong, Jian},
121
+ journal={arXiv preprint arXiv:2211.06088},
122
+ year={2022}
123
+ }
124
+ ```
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "repghostnet_050",
3
+ "num_classes": 1000,
4
+ "num_features": 1280,
5
+ "pretrained_cfg": {
6
+ "tag": "in1k",
7
+ "custom_load": false,
8
+ "input_size": [
9
+ 3,
10
+ 224,
11
+ 224
12
+ ],
13
+ "fixed_input_size": false,
14
+ "interpolation": "bilinear",
15
+ "crop_pct": 0.875,
16
+ "crop_mode": "center",
17
+ "mean": [
18
+ 0.485,
19
+ 0.456,
20
+ 0.406
21
+ ],
22
+ "std": [
23
+ 0.229,
24
+ 0.224,
25
+ 0.225
26
+ ],
27
+ "num_classes": 1000,
28
+ "pool_size": [
29
+ 7,
30
+ 7
31
+ ],
32
+ "first_conv": "conv_stem",
33
+ "classifier": "classifier"
34
+ }
35
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1113b67dd8459afa557de736b0aeab9bc07d6f6867b945fdb517608a207165d4
3
+ size 9393760
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75be09ede869a08164efb4f715a21d545e049f0abcdca35425409e01e373fca4
3
+ size 9553037