timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
0926481
1 Parent(s): d0ed531

Update model config and README

Browse files
Files changed (2) hide show
  1. README.md +9 -9
  2. config.json +2 -2
README.md CHANGED
@@ -19,9 +19,9 @@ A collection of hparams (timm .yaml config files) for this training series can b
19
  - **Model Type:** Image classification / feature backbone
20
  - **Model Stats:**
21
  - Params (M): 21.8
22
- - GMACs: 3.9
23
- - Activations (M): 4.5
24
- - Image size: train = 224 x 224, test = 448 x 448
25
  - **Dataset:** ImageNet-1k
26
  - **Papers:**
27
  - PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
@@ -78,11 +78,11 @@ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batc
78
  for o in output:
79
  # print shape of each feature map in output
80
  # e.g.:
81
- # torch.Size([1, 64, 112, 112])
82
- # torch.Size([1, 64, 56, 56])
83
- # torch.Size([1, 128, 28, 28])
84
- # torch.Size([1, 256, 14, 14])
85
- # torch.Size([1, 512, 7, 7])
86
 
87
  print(o.shape)
88
  ```
@@ -113,7 +113,7 @@ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_featu
113
  # or equivalently (without needing to set num_classes=0)
114
 
115
  output = model.forward_features(transforms(img).unsqueeze(0))
116
- # output is unpooled, a (1, 512, 7, 7) shaped tensor
117
 
118
  output = model.forward_head(output, pre_logits=True)
119
  # output is a (1, num_features) shaped tensor
 
19
  - **Model Type:** Image classification / feature backbone
20
  - **Model Stats:**
21
  - Params (M): 21.8
22
+ - GMACs: 10.5
23
+ - Activations (M): 12.1
24
+ - Image size: train = 384 x 348, test = 448 x 448
25
  - **Dataset:** ImageNet-1k
26
  - **Papers:**
27
  - PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
 
78
  for o in output:
79
  # print shape of each feature map in output
80
  # e.g.:
81
+ # torch.Size([1, 64, 192, 174])
82
+ # torch.Size([1, 64, 96, 87])
83
+ # torch.Size([1, 128, 48, 44])
84
+ # torch.Size([1, 256, 24, 22])
85
+ # torch.Size([1, 512, 12, 11])
86
 
87
  print(o.shape)
88
  ```
 
113
  # or equivalently (without needing to set num_classes=0)
114
 
115
  output = model.forward_features(transforms(img).unsqueeze(0))
116
+ # output is unpooled, a (1, 512, 12, 11) shaped tensor
117
 
118
  output = model.forward_head(output, pre_logits=True)
119
  # output is a (1, num_features) shaped tensor
config.json CHANGED
@@ -7,8 +7,8 @@
7
  "custom_load": false,
8
  "input_size": [
9
  3,
10
- 224,
11
- 224
12
  ],
13
  "test_input_size": [
14
  3,
 
7
  "custom_load": false,
8
  "input_size": [
9
  3,
10
+ 384,
11
+ 348
12
  ],
13
  "test_input_size": [
14
  3,