timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
ed7352e
1 Parent(s): cc03678
Files changed (4) hide show
  1. README.md +151 -0
  2. config.json +36 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_tag: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-12k
9
+ ---
10
+ # Model card for rexnetr_200.sw_in12k
11
+
12
+ A ReXNet-R image classification model. The R variant of the architecture is `timm` specific and rounds channels (modulus 8 or 16) to prevent performance issues w/ NVIDIA Tensor Cores. Pretrained on ImageNet-12k by Ross Wightman in `timm`.
13
+
14
+
15
+ ## Model Details
16
+ - **Model Type:** Image classification / feature backbone
17
+ - **Model Stats:**
18
+ - Params (M): 44.2
19
+ - GMACs: 1.6
20
+ - Activations (M): 15.1
21
+ - Image size: 224 x 224
22
+ - **Papers:**
23
+ - Rethinking Channel Dimensions for Efficient Model Design: https://arxiv.org/abs/2007.00992
24
+ - **Original:** https://github.com/huggingface/pytorch-image-models
25
+ - **Dataset:** ImageNet-12k
26
+
27
+ ## Model Usage
28
+ ### Image Classification
29
+ ```python
30
+ from urllib.request import urlopen
31
+ from PIL import Image
32
+ import timm
33
+
34
+ img = Image.open(urlopen(
35
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
36
+ ))
37
+
38
+ model = timm.create_model('rexnetr_200.sw_in12k', pretrained=True)
39
+ model = model.eval()
40
+
41
+ # get model specific transforms (normalization, resize)
42
+ data_config = timm.data.resolve_model_data_config(model)
43
+ transforms = timm.data.create_transform(**data_config, is_training=False)
44
+
45
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
46
+
47
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
48
+ ```
49
+
50
+ ### Feature Map Extraction
51
+ ```python
52
+ from urllib.request import urlopen
53
+ from PIL import Image
54
+ import timm
55
+
56
+ img = Image.open(urlopen(
57
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
58
+ ))
59
+
60
+ model = timm.create_model(
61
+ 'rexnetr_200.sw_in12k',
62
+ pretrained=True,
63
+ features_only=True,
64
+ )
65
+ model = model.eval()
66
+
67
+ # get model specific transforms (normalization, resize)
68
+ data_config = timm.data.resolve_model_data_config(model)
69
+ transforms = timm.data.create_transform(**data_config, is_training=False)
70
+
71
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
72
+
73
+ for o in output:
74
+ # print shape of each feature map in output
75
+ # e.g.:
76
+ # torch.Size([1, 32, 112, 112])
77
+ # torch.Size([1, 80, 56, 56])
78
+ # torch.Size([1, 120, 28, 28])
79
+ # torch.Size([1, 256, 14, 14])
80
+ # torch.Size([1, 368, 7, 7])
81
+
82
+ print(o.shape)
83
+ ```
84
+
85
+ ### Image Embeddings
86
+ ```python
87
+ from urllib.request import urlopen
88
+ from PIL import Image
89
+ import timm
90
+
91
+ img = Image.open(urlopen(
92
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
93
+ ))
94
+
95
+ model = timm.create_model(
96
+ 'rexnetr_200.sw_in12k',
97
+ pretrained=True,
98
+ num_classes=0, # remove classifier nn.Linear
99
+ )
100
+ model = model.eval()
101
+
102
+ # get model specific transforms (normalization, resize)
103
+ data_config = timm.data.resolve_model_data_config(model)
104
+ transforms = timm.data.create_transform(**data_config, is_training=False)
105
+
106
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
107
+
108
+ # or equivalently (without needing to set num_classes=0)
109
+
110
+ output = model.forward_features(transforms(img).unsqueeze(0))
111
+ # output is unpooled, a (1, 2560, 7, 7) shaped tensor
112
+
113
+ output = model.forward_head(output, pre_logits=True)
114
+ # output is a (1, num_features) shaped tensor
115
+ ```
116
+
117
+ ## Model Comparison
118
+ Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results)."
119
+
120
+ |model |top1 |top5 |param_count|img_size|crop_pct|
121
+ |-------------------------|------|------|-----------|--------|--------|
122
+ |rexnetr_300.sw_in12k_ft_in1k|84.53 |97.252|34.81 |288 |1.0 |
123
+ |rexnetr_200.sw_in12k_ft_in1k|83.164|96.648|16.52 |288 |1.0 |
124
+ |rexnet_300.nav_in1k |82.772|96.232|34.71 |224 |0.875 |
125
+ |rexnet_200.nav_in1k |81.652|95.668|16.37 |224 |0.875 |
126
+ |rexnet_150.nav_in1k |80.308|95.174|9.73 |224 |0.875 |
127
+ |rexnet_130.nav_in1k |79.478|94.68 |7.56 |224 |0.875 |
128
+ |rexnet_100.nav_in1k |77.832|93.886|4.8 |224 |0.875 |
129
+
130
+ ## Citation
131
+ ```bibtex
132
+ @misc{han2021rethinking,
133
+ title={Rethinking Channel Dimensions for Efficient Model Design},
134
+ author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo},
135
+ year={2021},
136
+ eprint={2007.00992},
137
+ archivePrefix={arXiv},
138
+ primaryClass={cs.CV}
139
+ }
140
+ ```
141
+ ```bibtex
142
+ @misc{rw2019timm,
143
+ author = {Ross Wightman},
144
+ title = {PyTorch Image Models},
145
+ year = {2019},
146
+ publisher = {GitHub},
147
+ journal = {GitHub repository},
148
+ doi = {10.5281/zenodo.4414861},
149
+ howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
150
+ }
151
+ ```
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "rexnetr_200",
3
+ "num_classes": 11821,
4
+ "num_features": 2560,
5
+ "pretrained_cfg": {
6
+ "tag": "sw_in12k",
7
+ "custom_load": false,
8
+ "input_size": [
9
+ 3,
10
+ 224,
11
+ 224
12
+ ],
13
+ "fixed_input_size": false,
14
+ "interpolation": "bicubic",
15
+ "crop_pct": 1.0,
16
+ "crop_mode": "center",
17
+ "mean": [
18
+ 0.485,
19
+ 0.456,
20
+ 0.406
21
+ ],
22
+ "std": [
23
+ 0.229,
24
+ 0.224,
25
+ 0.225
26
+ ],
27
+ "num_classes": 11821,
28
+ "pool_size": [
29
+ 7,
30
+ 7
31
+ ],
32
+ "first_conv": "stem.conv",
33
+ "classifier": "head.fc",
34
+ "license": "apache-2.0"
35
+ }
36
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:932dd977dc582986db4795cb166e526e5909c0abfc2db94c56815868a2ade55d
3
+ size 177313582
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14ecfbc9aa9e369973b601e041646ed03c01e2b28e1d232e3b20d2f31a42839b
3
+ size 177414657