timm
/

rwightman HF staff commited on
Commit
888bbef
1 Parent(s): 231e745
Files changed (4) hide show
  1. README.md +155 -0
  2. config.json +33 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for test_vit2.r160_in1k
11
+
12
+ A very small test Vision Transformer image classification model for testing and sanity checks. Trained on ImageNet-1k by Ross Wightman.
13
+
14
+ ## Model Details
15
+ - **Model Type:** Image classification / feature backbone
16
+ - **Model Stats:**
17
+ - Params (M): 0.5
18
+ - GMACs: 0.0
19
+ - Activations (M): 0.4
20
+ - Image size: 160 x 160
21
+ - **Dataset:** ImageNet-1k
22
+ - **Papers:**
23
+ - PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
24
+ - **Original:** https://github.com/huggingface/pytorch-image-models
25
+
26
+ ## Model Usage
27
+ ### Image Classification
28
+ ```python
29
+ from urllib.request import urlopen
30
+ from PIL import Image
31
+ import timm
32
+
33
+ img = Image.open(urlopen(
34
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
35
+ ))
36
+
37
+ model = timm.create_model('test_vit2.r160_in1k', pretrained=True)
38
+ model = model.eval()
39
+
40
+ # get model specific transforms (normalization, resize)
41
+ data_config = timm.data.resolve_model_data_config(model)
42
+ transforms = timm.data.create_transform(**data_config, is_training=False)
43
+
44
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
45
+
46
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
47
+ ```
48
+
49
+ ### Feature Map Extraction
50
+ ```python
51
+ from urllib.request import urlopen
52
+ from PIL import Image
53
+ import timm
54
+
55
+ img = Image.open(urlopen(
56
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
57
+ ))
58
+
59
+ model = timm.create_model(
60
+ 'test_vit2.r160_in1k',
61
+ pretrained=True,
62
+ features_only=True,
63
+ )
64
+ model = model.eval()
65
+
66
+ # get model specific transforms (normalization, resize)
67
+ data_config = timm.data.resolve_model_data_config(model)
68
+ transforms = timm.data.create_transform(**data_config, is_training=False)
69
+
70
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
71
+
72
+ for o in output:
73
+ # print shape of each feature map in output
74
+ # e.g.:
75
+ # torch.Size([1, 64, 10, 10])
76
+ # torch.Size([1, 64, 10, 10])
77
+ # torch.Size([1, 64, 10, 10])
78
+
79
+ print(o.shape)
80
+ ```
81
+
82
+ ### Image Embeddings
83
+ ```python
84
+ from urllib.request import urlopen
85
+ from PIL import Image
86
+ import timm
87
+
88
+ img = Image.open(urlopen(
89
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
90
+ ))
91
+
92
+ model = timm.create_model(
93
+ 'test_vit2.r160_in1k',
94
+ pretrained=True,
95
+ num_classes=0, # remove classifier nn.Linear
96
+ )
97
+ model = model.eval()
98
+
99
+ # get model specific transforms (normalization, resize)
100
+ data_config = timm.data.resolve_model_data_config(model)
101
+ transforms = timm.data.create_transform(**data_config, is_training=False)
102
+
103
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
104
+
105
+ # or equivalently (without needing to set num_classes=0)
106
+
107
+ output = model.forward_features(transforms(img).unsqueeze(0))
108
+ # output is unpooled, a (1, 101, 64) shaped tensor
109
+
110
+ output = model.forward_head(output, pre_logits=True)
111
+ # output is a (1, num_features) shaped tensor
112
+ ```
113
+
114
+ ## Model Comparison
115
+ ### By Top-1
116
+
117
+ |model |img_size|top1 |top5 |param_count|
118
+ |--------------------------------|--------|------|------|-----------|
119
+ |test_convnext3.r160_in1k |192 |54.558|79.356|0.47 |
120
+ |test_convnext2.r160_in1k |192 |53.62 |78.636|0.48 |
121
+ |test_convnext2.r160_in1k |160 |53.51 |78.526|0.48 |
122
+ |test_convnext3.r160_in1k |160 |53.328|78.318|0.47 |
123
+ |test_convnext.r160_in1k |192 |48.532|74.944|0.27 |
124
+ |test_nfnet.r160_in1k |192 |48.298|73.446|0.38 |
125
+ |test_convnext.r160_in1k |160 |47.764|74.152|0.27 |
126
+ |test_nfnet.r160_in1k |160 |47.616|72.898|0.38 |
127
+ |test_efficientnet.r160_in1k |192 |47.164|71.706|0.36 |
128
+ |test_efficientnet_evos.r160_in1k|192 |46.924|71.53 |0.36 |
129
+ |test_byobnet.r160_in1k |192 |46.688|71.668|0.46 |
130
+ |test_efficientnet_evos.r160_in1k|160 |46.498|71.006|0.36 |
131
+ |test_efficientnet.r160_in1k |160 |46.454|71.014|0.36 |
132
+ |test_byobnet.r160_in1k |160 |45.852|70.996|0.46 |
133
+ |test_efficientnet_ln.r160_in1k |192 |44.538|69.974|0.36 |
134
+ |test_efficientnet_gn.r160_in1k |192 |44.448|69.75 |0.36 |
135
+ |test_efficientnet_ln.r160_in1k |160 |43.916|69.404|0.36 |
136
+ |test_efficientnet_gn.r160_in1k |160 |43.88 |69.162|0.36 |
137
+ |test_vit2.r160_in1k |192 |43.454|69.798|0.46 |
138
+ |test_resnet.r160_in1k |192 |42.376|68.744|0.47 |
139
+ |test_vit2.r160_in1k |160 |42.232|68.982|0.46 |
140
+ |test_vit.r160_in1k |192 |41.984|68.64 |0.37 |
141
+ |test_resnet.r160_in1k |160 |41.578|67.956|0.47 |
142
+ |test_vit.r160_in1k |160 |40.946|67.362|0.37 |
143
+
144
+ ## Citation
145
+ ```bibtex
146
+ @misc{rw2019timm,
147
+ author = {Ross Wightman},
148
+ title = {PyTorch Image Models},
149
+ year = {2019},
150
+ publisher = {GitHub},
151
+ journal = {GitHub repository},
152
+ doi = {10.5281/zenodo.4414861},
153
+ howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
154
+ }
155
+ ```
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "test_vit2",
3
+ "num_classes": 1000,
4
+ "num_features": 64,
5
+ "global_pool": "avg",
6
+ "pretrained_cfg": {
7
+ "tag": "r160_in1k",
8
+ "custom_load": false,
9
+ "input_size": [
10
+ 3,
11
+ 160,
12
+ 160
13
+ ],
14
+ "fixed_input_size": true,
15
+ "interpolation": "bicubic",
16
+ "crop_pct": 0.95,
17
+ "crop_mode": "center",
18
+ "mean": [
19
+ 0.5,
20
+ 0.5,
21
+ 0.5
22
+ ],
23
+ "std": [
24
+ 0.5,
25
+ 0.5,
26
+ 0.5
27
+ ],
28
+ "num_classes": 1000,
29
+ "pool_size": null,
30
+ "first_conv": "patch_embed.proj",
31
+ "classifier": "head"
32
+ }
33
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7c53c5a841ea4066ee6b19a96f49e1abbbf72876f4a768745c0cf4f5df84201
3
+ size 1833160
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e9aed879a20e1445cada26b3447cf62fe6b836200031be50c4371c6f871b960
3
+ size 1866154