Add model
Browse files- README.md +155 -0
- config.json +33 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- timm
|
5 |
+
library_name: timm
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
---
|
10 |
+
# Model card for test_vit2.r160_in1k
|
11 |
+
|
12 |
+
A very small test Vision Transformer image classification model for testing and sanity checks. Trained on ImageNet-1k by Ross Wightman.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
- **Model Type:** Image classification / feature backbone
|
16 |
+
- **Model Stats:**
|
17 |
+
- Params (M): 0.5
|
18 |
+
- GMACs: 0.0
|
19 |
+
- Activations (M): 0.4
|
20 |
+
- Image size: 160 x 160
|
21 |
+
- **Dataset:** ImageNet-1k
|
22 |
+
- **Papers:**
|
23 |
+
- PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
|
24 |
+
- **Original:** https://github.com/huggingface/pytorch-image-models
|
25 |
+
|
26 |
+
## Model Usage
|
27 |
+
### Image Classification
|
28 |
+
```python
|
29 |
+
from urllib.request import urlopen
|
30 |
+
from PIL import Image
|
31 |
+
import timm
|
32 |
+
|
33 |
+
img = Image.open(urlopen(
|
34 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
35 |
+
))
|
36 |
+
|
37 |
+
model = timm.create_model('test_vit2.r160_in1k', pretrained=True)
|
38 |
+
model = model.eval()
|
39 |
+
|
40 |
+
# get model specific transforms (normalization, resize)
|
41 |
+
data_config = timm.data.resolve_model_data_config(model)
|
42 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
43 |
+
|
44 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
45 |
+
|
46 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
47 |
+
```
|
48 |
+
|
49 |
+
### Feature Map Extraction
|
50 |
+
```python
|
51 |
+
from urllib.request import urlopen
|
52 |
+
from PIL import Image
|
53 |
+
import timm
|
54 |
+
|
55 |
+
img = Image.open(urlopen(
|
56 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
57 |
+
))
|
58 |
+
|
59 |
+
model = timm.create_model(
|
60 |
+
'test_vit2.r160_in1k',
|
61 |
+
pretrained=True,
|
62 |
+
features_only=True,
|
63 |
+
)
|
64 |
+
model = model.eval()
|
65 |
+
|
66 |
+
# get model specific transforms (normalization, resize)
|
67 |
+
data_config = timm.data.resolve_model_data_config(model)
|
68 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
69 |
+
|
70 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
71 |
+
|
72 |
+
for o in output:
|
73 |
+
# print shape of each feature map in output
|
74 |
+
# e.g.:
|
75 |
+
# torch.Size([1, 64, 10, 10])
|
76 |
+
# torch.Size([1, 64, 10, 10])
|
77 |
+
# torch.Size([1, 64, 10, 10])
|
78 |
+
|
79 |
+
print(o.shape)
|
80 |
+
```
|
81 |
+
|
82 |
+
### Image Embeddings
|
83 |
+
```python
|
84 |
+
from urllib.request import urlopen
|
85 |
+
from PIL import Image
|
86 |
+
import timm
|
87 |
+
|
88 |
+
img = Image.open(urlopen(
|
89 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
90 |
+
))
|
91 |
+
|
92 |
+
model = timm.create_model(
|
93 |
+
'test_vit2.r160_in1k',
|
94 |
+
pretrained=True,
|
95 |
+
num_classes=0, # remove classifier nn.Linear
|
96 |
+
)
|
97 |
+
model = model.eval()
|
98 |
+
|
99 |
+
# get model specific transforms (normalization, resize)
|
100 |
+
data_config = timm.data.resolve_model_data_config(model)
|
101 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
102 |
+
|
103 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
104 |
+
|
105 |
+
# or equivalently (without needing to set num_classes=0)
|
106 |
+
|
107 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
108 |
+
# output is unpooled, a (1, 101, 64) shaped tensor
|
109 |
+
|
110 |
+
output = model.forward_head(output, pre_logits=True)
|
111 |
+
# output is a (1, num_features) shaped tensor
|
112 |
+
```
|
113 |
+
|
114 |
+
## Model Comparison
|
115 |
+
### By Top-1
|
116 |
+
|
117 |
+
|model |img_size|top1 |top5 |param_count|
|
118 |
+
|--------------------------------|--------|------|------|-----------|
|
119 |
+
|test_convnext3.r160_in1k |192 |54.558|79.356|0.47 |
|
120 |
+
|test_convnext2.r160_in1k |192 |53.62 |78.636|0.48 |
|
121 |
+
|test_convnext2.r160_in1k |160 |53.51 |78.526|0.48 |
|
122 |
+
|test_convnext3.r160_in1k |160 |53.328|78.318|0.47 |
|
123 |
+
|test_convnext.r160_in1k |192 |48.532|74.944|0.27 |
|
124 |
+
|test_nfnet.r160_in1k |192 |48.298|73.446|0.38 |
|
125 |
+
|test_convnext.r160_in1k |160 |47.764|74.152|0.27 |
|
126 |
+
|test_nfnet.r160_in1k |160 |47.616|72.898|0.38 |
|
127 |
+
|test_efficientnet.r160_in1k |192 |47.164|71.706|0.36 |
|
128 |
+
|test_efficientnet_evos.r160_in1k|192 |46.924|71.53 |0.36 |
|
129 |
+
|test_byobnet.r160_in1k |192 |46.688|71.668|0.46 |
|
130 |
+
|test_efficientnet_evos.r160_in1k|160 |46.498|71.006|0.36 |
|
131 |
+
|test_efficientnet.r160_in1k |160 |46.454|71.014|0.36 |
|
132 |
+
|test_byobnet.r160_in1k |160 |45.852|70.996|0.46 |
|
133 |
+
|test_efficientnet_ln.r160_in1k |192 |44.538|69.974|0.36 |
|
134 |
+
|test_efficientnet_gn.r160_in1k |192 |44.448|69.75 |0.36 |
|
135 |
+
|test_efficientnet_ln.r160_in1k |160 |43.916|69.404|0.36 |
|
136 |
+
|test_efficientnet_gn.r160_in1k |160 |43.88 |69.162|0.36 |
|
137 |
+
|test_vit2.r160_in1k |192 |43.454|69.798|0.46 |
|
138 |
+
|test_resnet.r160_in1k |192 |42.376|68.744|0.47 |
|
139 |
+
|test_vit2.r160_in1k |160 |42.232|68.982|0.46 |
|
140 |
+
|test_vit.r160_in1k |192 |41.984|68.64 |0.37 |
|
141 |
+
|test_resnet.r160_in1k |160 |41.578|67.956|0.47 |
|
142 |
+
|test_vit.r160_in1k |160 |40.946|67.362|0.37 |
|
143 |
+
|
144 |
+
## Citation
|
145 |
+
```bibtex
|
146 |
+
@misc{rw2019timm,
|
147 |
+
author = {Ross Wightman},
|
148 |
+
title = {PyTorch Image Models},
|
149 |
+
year = {2019},
|
150 |
+
publisher = {GitHub},
|
151 |
+
journal = {GitHub repository},
|
152 |
+
doi = {10.5281/zenodo.4414861},
|
153 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
154 |
+
}
|
155 |
+
```
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "test_vit2",
|
3 |
+
"num_classes": 1000,
|
4 |
+
"num_features": 64,
|
5 |
+
"global_pool": "avg",
|
6 |
+
"pretrained_cfg": {
|
7 |
+
"tag": "r160_in1k",
|
8 |
+
"custom_load": false,
|
9 |
+
"input_size": [
|
10 |
+
3,
|
11 |
+
160,
|
12 |
+
160
|
13 |
+
],
|
14 |
+
"fixed_input_size": true,
|
15 |
+
"interpolation": "bicubic",
|
16 |
+
"crop_pct": 0.95,
|
17 |
+
"crop_mode": "center",
|
18 |
+
"mean": [
|
19 |
+
0.5,
|
20 |
+
0.5,
|
21 |
+
0.5
|
22 |
+
],
|
23 |
+
"std": [
|
24 |
+
0.5,
|
25 |
+
0.5,
|
26 |
+
0.5
|
27 |
+
],
|
28 |
+
"num_classes": 1000,
|
29 |
+
"pool_size": null,
|
30 |
+
"first_conv": "patch_embed.proj",
|
31 |
+
"classifier": "head"
|
32 |
+
}
|
33 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7c53c5a841ea4066ee6b19a96f49e1abbbf72876f4a768745c0cf4f5df84201
|
3 |
+
size 1833160
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e9aed879a20e1445cada26b3447cf62fe6b836200031be50c4371c6f871b960
|
3 |
+
size 1866154
|