prompt_fine_tuned_boolq_bert
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6444
- Accuracy: 0.8333
- F1: 0.7914
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 12 | 0.6844 | 0.5 | 0.5333 |
No log | 2.0 | 24 | 0.6700 | 0.6111 | 0.6408 |
No log | 3.0 | 36 | 0.6572 | 0.7778 | 0.7778 |
No log | 4.0 | 48 | 0.6492 | 0.8333 | 0.7914 |
No log | 5.0 | 60 | 0.6454 | 0.8333 | 0.7914 |
No log | 6.0 | 72 | 0.6444 | 0.8333 | 0.7914 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for tjasad/prompt_fine_tuned_boolq_bert
Base model
google-bert/bert-base-uncased