lilt-en-funsd-org / README.md
tkazusa's picture
End of training
edaaa86
|
raw
history blame
1.62 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
model-index:
  - name: lilt-en-funsd-org
    results: []

lilt-en-funsd-org

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8428
  • Answer: {'precision': 0.047225501770956316, 'recall': 0.09791921664626684, 'f1': 0.06371963361210674, 'number': 817}
  • Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
  • Question: {'precision': 0.08554412560909583, 'recall': 0.2934076137418756, 'f1': 0.13246698805281912, 'number': 1077}
  • Overall Precision: 0.0730
  • Overall Recall: 0.1967
  • Overall F1: 0.1065
  • Overall Accuracy: 0.2652

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2