gollm-instruct-all-in-one-v1
This model is a fine-tuned version of EleutherAI/polyglot-ko-12.8b on a custom mixed dataset
Model description
- No-context template
μλλ μμ
μ μ€λͺ
νλ μ§λ¬Έμ΄μ μΆκ° 컨ν
μ€νΈλ₯Ό μ 곡νλ λ§₯λ½μ΄ ν¨κ» μ 곡λ©λλ€. μμ²μ μ μ ν μλ£νλ λ΅λ³μ μμ±νμΈμ.
### μ§λ¬Έ:
{instruction}
### λ΅λ³:
- With context template
μλλ μμ
μ μ€λͺ
νλ μ§λ¬Έμ΄μ μΆκ° 컨ν
μ€νΈλ₯Ό μ 곡νλ λ§₯λ½μ΄ ν¨κ» μ 곡λ©λλ€. μμ²μ μ μ ν μλ£νλ λ΅λ³μ μμ±νμΈμ.
### λ§₯λ½:
{input}
### μ§λ¬Έ:
{instruction}
### λ΅λ³:
Intended uses & limitations
More information needed
Training and evaluation data
- self-introduction (20 samples)
- Combined KoAlpaca and KULLM - no-context samples only (145.8k samples)
- KoAlpaca v1.0
- KoAlpaca v1.1
- KULLM (Dolly and Vicuna only)
- Naver news summarization (22.2k samples)
- KLUE MRC (17.5k samples)
- KLUE STS (5.6k samples)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- saved_checkpoint_at_epoch: 4 (condition: loss < 0.3)
Training results
Training Loss | Epoch | Step |
---|---|---|
1.5688 | 1.0 | 11947 |
1.0424 | 2.0 | 23895 |
0.5542 | 3.0 | 35843 |
0.2548 | 4.0 | 47791 |
0.1479 | 5.0 | 59738 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 4,286
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tlphams/gollm-12.8b-instruct-v2.0
Base model
EleutherAI/polyglot-ko-12.8b