Edit model card

tmnam20/test-model1

This is a sentence-transformers model: It maps sentences & paragraphs to a 1 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('tmnam20/test-model1')
embeddings = model.encode(sentences)
print(embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Full Model Architecture

MultiTaskSentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (task_task1_head): Dense({'in_features': 1, 'out_features': 1, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (task_task2_head): Dense({'in_features': 1, 'out_features': 1, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Citing & Authors

Downloads last month
9
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.