Librarian Bot: Add base_model information to model

#2
Files changed (1) hide show
  1. README.md +24 -24
README.md CHANGED
@@ -5,49 +5,49 @@ metrics:
5
  - f1
6
  - precision
7
  - recall
 
 
 
 
 
8
  model-index:
9
  - name: tner/roberta-large-mit-movie-trivia
10
  results:
11
  - task:
12
- name: Token Classification
13
  type: token-classification
 
14
  dataset:
15
  name: tner/mit_movie_trivia
16
  type: tner/mit_movie_trivia
17
  args: tner/mit_movie_trivia
18
  metrics:
19
- - name: F1
20
- type: f1
21
  value: 0.7284025200655909
22
- - name: Precision
23
- type: precision
24
  value: 0.7151330283002881
25
- - name: Recall
26
- type: recall
27
  value: 0.7421737601125572
28
- - name: F1 (macro)
29
- type: f1_macro
30
  value: 0.6502255723148889
31
- - name: Precision (macro)
32
- type: precision_macro
33
  value: 0.6457158565124362
34
- - name: Recall (macro)
35
- type: recall_macro
36
  value: 0.6578012664661943
37
- - name: F1 (entity span)
38
- type: f1_entity_span
39
  value: 0.749525289142068
40
- - name: Precision (entity span)
41
- type: precision_entity_span
42
  value: 0.7359322033898306
43
- - name: Recall (entity span)
44
- type: recall_entity_span
45
  value: 0.7636299683432993
46
-
47
- pipeline_tag: token-classification
48
- widget:
49
- - text: "Jacob Collier is a Grammy awarded artist from England."
50
- example_title: "NER Example 1"
51
  ---
52
  # tner/roberta-large-mit-movie-trivia
53
 
 
5
  - f1
6
  - precision
7
  - recall
8
+ pipeline_tag: token-classification
9
+ widget:
10
+ - text: Jacob Collier is a Grammy awarded artist from England.
11
+ example_title: NER Example 1
12
+ base_model: roberta-large
13
  model-index:
14
  - name: tner/roberta-large-mit-movie-trivia
15
  results:
16
  - task:
 
17
  type: token-classification
18
+ name: Token Classification
19
  dataset:
20
  name: tner/mit_movie_trivia
21
  type: tner/mit_movie_trivia
22
  args: tner/mit_movie_trivia
23
  metrics:
24
+ - type: f1
 
25
  value: 0.7284025200655909
26
+ name: F1
27
+ - type: precision
28
  value: 0.7151330283002881
29
+ name: Precision
30
+ - type: recall
31
  value: 0.7421737601125572
32
+ name: Recall
33
+ - type: f1_macro
34
  value: 0.6502255723148889
35
+ name: F1 (macro)
36
+ - type: precision_macro
37
  value: 0.6457158565124362
38
+ name: Precision (macro)
39
+ - type: recall_macro
40
  value: 0.6578012664661943
41
+ name: Recall (macro)
42
+ - type: f1_entity_span
43
  value: 0.749525289142068
44
+ name: F1 (entity span)
45
+ - type: precision_entity_span
46
  value: 0.7359322033898306
47
+ name: Precision (entity span)
48
+ - type: recall_entity_span
49
  value: 0.7636299683432993
50
+ name: Recall (entity span)
 
 
 
 
51
  ---
52
  # tner/roberta-large-mit-movie-trivia
53