Librarian Bot: Add base_model information to model
#2
by
librarian-bot
- opened
README.md
CHANGED
@@ -5,49 +5,49 @@ metrics:
|
|
5 |
- f1
|
6 |
- precision
|
7 |
- recall
|
|
|
|
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: tner/roberta-large-mit-movie-trivia
|
10 |
results:
|
11 |
- task:
|
12 |
-
name: Token Classification
|
13 |
type: token-classification
|
|
|
14 |
dataset:
|
15 |
name: tner/mit_movie_trivia
|
16 |
type: tner/mit_movie_trivia
|
17 |
args: tner/mit_movie_trivia
|
18 |
metrics:
|
19 |
-
-
|
20 |
-
type: f1
|
21 |
value: 0.7284025200655909
|
22 |
-
|
23 |
-
|
24 |
value: 0.7151330283002881
|
25 |
-
|
26 |
-
|
27 |
value: 0.7421737601125572
|
28 |
-
|
29 |
-
|
30 |
value: 0.6502255723148889
|
31 |
-
|
32 |
-
|
33 |
value: 0.6457158565124362
|
34 |
-
|
35 |
-
|
36 |
value: 0.6578012664661943
|
37 |
-
|
38 |
-
|
39 |
value: 0.749525289142068
|
40 |
-
|
41 |
-
|
42 |
value: 0.7359322033898306
|
43 |
-
|
44 |
-
|
45 |
value: 0.7636299683432993
|
46 |
-
|
47 |
-
pipeline_tag: token-classification
|
48 |
-
widget:
|
49 |
-
- text: "Jacob Collier is a Grammy awarded artist from England."
|
50 |
-
example_title: "NER Example 1"
|
51 |
---
|
52 |
# tner/roberta-large-mit-movie-trivia
|
53 |
|
|
|
5 |
- f1
|
6 |
- precision
|
7 |
- recall
|
8 |
+
pipeline_tag: token-classification
|
9 |
+
widget:
|
10 |
+
- text: Jacob Collier is a Grammy awarded artist from England.
|
11 |
+
example_title: NER Example 1
|
12 |
+
base_model: roberta-large
|
13 |
model-index:
|
14 |
- name: tner/roberta-large-mit-movie-trivia
|
15 |
results:
|
16 |
- task:
|
|
|
17 |
type: token-classification
|
18 |
+
name: Token Classification
|
19 |
dataset:
|
20 |
name: tner/mit_movie_trivia
|
21 |
type: tner/mit_movie_trivia
|
22 |
args: tner/mit_movie_trivia
|
23 |
metrics:
|
24 |
+
- type: f1
|
|
|
25 |
value: 0.7284025200655909
|
26 |
+
name: F1
|
27 |
+
- type: precision
|
28 |
value: 0.7151330283002881
|
29 |
+
name: Precision
|
30 |
+
- type: recall
|
31 |
value: 0.7421737601125572
|
32 |
+
name: Recall
|
33 |
+
- type: f1_macro
|
34 |
value: 0.6502255723148889
|
35 |
+
name: F1 (macro)
|
36 |
+
- type: precision_macro
|
37 |
value: 0.6457158565124362
|
38 |
+
name: Precision (macro)
|
39 |
+
- type: recall_macro
|
40 |
value: 0.6578012664661943
|
41 |
+
name: Recall (macro)
|
42 |
+
- type: f1_entity_span
|
43 |
value: 0.749525289142068
|
44 |
+
name: F1 (entity span)
|
45 |
+
- type: precision_entity_span
|
46 |
value: 0.7359322033898306
|
47 |
+
name: Precision (entity span)
|
48 |
+
- type: recall_entity_span
|
49 |
value: 0.7636299683432993
|
50 |
+
name: Recall (entity span)
|
|
|
|
|
|
|
|
|
51 |
---
|
52 |
# tner/roberta-large-mit-movie-trivia
|
53 |
|