todeschini's picture
Model save
7220d5b verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-finetuned-fullsample-v1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: pt
          split: None
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 11.31198430186737

whisper-finetuned-fullsample-v1

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3719
  • Wer: 11.3120

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 600
  • training_steps: 6000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0094 8.1384 1000 0.2714 24.2485
0.0008 16.2767 2000 0.3292 25.8955
0.0011 24.4151 3000 0.3289 12.6679
0.0003 32.5534 4000 0.3546 12.0631
0.0015 40.6918 5000 0.3405 12.0647
0.0002 48.8301 6000 0.3719 11.3120

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.2.dev0
  • Tokenizers 0.20.0