File size: 14,047 Bytes
7f08c5a
 
 
 
 
 
 
 
 
 
 
 
f7e58ee
7f08c5a
 
f7e58ee
 
 
 
 
 
 
e6b30dd
f7e58ee
7f08c5a
f7e58ee
 
 
 
 
 
7f08c5a
24cfbea
 
 
 
f7e58ee
24cfbea
 
7f08c5a
 
 
0eca616
7f08c5a
 
 
 
 
 
 
 
 
 
 
23a4afa
7f08c5a
 
 
 
3784eab
 
 
 
 
 
 
 
 
 
23a4afa
3784eab
 
 
 
 
 
 
 
 
 
 
 
 
 
7f08c5a
23a4afa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f08c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eca616
7f08c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eca616
67c49ac
9ff2804
 
 
0eca616
678d8ba
 
 
 
 
 
 
 
 
 
 
 
0eca616
678d8ba
 
 
 
 
 
 
 
 
 
 
 
86dc5b1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
---
language:
  - en
  - ja
library_name: transformers
pipeline_tag: text-generation
license: llama2
model_type: llama
---

# Swallow

Our Swallow model has undergone continual pre-training from the [Llama 2 family](https://huggingface.co/meta-llama), primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT). 
Links to other models can be found in the index.

# Model Release Updates

We are excited to share the release schedule for our latest models:
- **April 26, 2024**: Released version 0.1 of our enhanced instruction-tuned models: [Swallow-7b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v0.1), [Swallow-13b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-v0.1), and [Swallow-70b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-v0.1) as preview versions.
- **March 2, 2024**: Released the [Swallow-7b-plus-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf), a model trained with approximately twice as many Japanese tokens as [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf).
- **February 4, 2024**: Released the [Swallow-13b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf).
- **January 26, 2024**: Released the [Swallow-7b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf), [Swallow-7b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf), [Swallow-70b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf), and [Swallow-70b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)
- **December 19, 2023**: Released the [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf), [Swallow-7b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf), [Swallow-13b-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-hf), [Swallow-13b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf), [Swallow-70b-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-hf), and [Swallow-70b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf).

## Swallow Model Index
|Model|Swallow-hf|Swallow-instruct-hf|Swallow-instruct-v0.1|
|---|---|---|---|
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)|[Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v1.0)|
|7B-Plus| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf) | N/A | N/A |
|13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf)| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-v1.0)|
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf)| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-v1.0)|

## Swallow Model Index NVE (No Vocabulary Expansion)
|Model|Swallow-NVE-hf|Swallow-NVE-instruct-hf|
|---|---|---|
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf)|
|13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf) | N/A |
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)|

![logo](./logo.png)

This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).
Read our [blog post](https://zenn.dev/tokyotech_lm/articles/d6cb3a8fdfc907) or our [paper](https://arxiv.org/abs/2404.17790)

## Model Details

* **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture. 
* **Language(s)**: Japanese English
* **Library**: [Megatron-LM](https://github.com/rioyokotalab/Megatron-Llama2) 
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
* **Contact**: swallow[at]nlp.c.titech.ac.jp 

## Base Model Performance

### Japanese tasks

|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|
|---|---|---|---|---|---|---|---|---|---|
|   |   |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|
| Llama 2 | 7B | 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 |
| Swallow | 7B | 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 |
| Swallow-Plus | 7B | 0.5478 | 0.5493 | 0.6030 | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 |
| Swallow-NVE | 7B | 0.5433 | 0.5425 | 0.5729 | 0.8684 | 0.2117 | 0.1200 | 0.2405 | 0.1512 |
| Llama 2 | 13B | 0.6997 | 0.4415 | 0.4170 | 0.8533 | 0.2139 | 0.1320 | 0.2146 | 0.1982 |
| Swallow | 13B | 0.7837 | 0.5063 | 0.6398 | 0.9005 | 0.2168 | 0.2040 | 0.2720 | 0.1771 |
| Swallow-NVE | 13B | 0.7712 | 0.5438 | 0.6351 | 0.9030 | 0.2294 | 0.2120 | 0.2735 | 0.1817 |
| Llama 2 | 70B | 0.8686 | 0.4656 | 0.5256 | 0.9080 | 0.2361 | 0.3560 | 0.2643 | **0.2398** |
| Swallow | 70B | 0.9348 | **0.6290** | 0.6960 | 0.9176 | 0.2266 | **0.4840** | **0.3043** | 0.2298 |
| Swallow-NVE | 70B | **0.9410** | 0.5759 | **0.7024** | **0.9254** | **0.2758** | 0.4720 | 0.3042 | 0.2322 |
### English tasks

|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|
|---|---|---|---|---|---|---|---|
|   |   |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot|
| Llama 2 | 7B    | 0.3580     | 0.6265   | 0.5860    | 0.3207   | 0.9049 | 0.1410 |
| Swallow | 7B    | 0.3180     | 0.4836   | 0.5308    | 0.3125   | 0.8817 | 0.1130 |
| Swallow-Plus | 7B | 0.3280     | 0.4558   | 0.5259    | 0.3134   | 0.8929 | 0.1061 |
| Swallow-NVE | 7B | 0.3180     | 0.5079   | 0.5329    | 0.2919   | 0.8817 | 0.0986 |
| Llama 2 | 13B   | 0.3760     | 0.7255   | 0.6148    | 0.3681   | 0.9140 | 0.2403 |
| Swallow | 13B   | 0.3500     | 0.5852   | 0.5660    | 0.3406   | 0.9075 | 0.2039 |
| Swallow-NVE | 13B | 0.3460     | 0.6025   | 0.5700    | 0.3478   | 0.9006 | 0.1751 |
| Llama 2 | 70B   | **0.4280** | **0.8239** | **0.6742** | **0.3770** | **0.9290** | **0.5284** |
| Swallow | 70B   | 0.4220     | 0.7756   | 0.6458    | 0.3745   | 0.9204 | 0.4867 |
| Swallow-NVE | 70B | 0.4240     | 0.7817   | 0.6439    | 0.3451   | 0.9256 | 0.4943 |

## Evaluation Benchmarks

### Japanese evaluation benchmarks

We used llm-jp-eval(v1.0.0) and JP Language Model Evaluation Harness(commit #9b42d41). The details are as follows:

- Multiple-choice question answering (JCommonsenseQA [Kurihara+, 2022])
- Open-ended question answering (JEMHopQA [Ishii+, 2023])
- Open-ended question answering (NIILC [Sekine, 2003])
- Machine reading comprehension (JSQuAD [Kurihara+, 2022])
- Automatic summarization (XL-Sum [Hasan+, 2021])
- Machine translation (WMT2020 ja-en [Barrault+, 2020])
- Machine translation (WMT2020 en-ja [Barrault+, 2020])
- Mathematical reasoning (MGSM [Shi+, 2023])

### English evaluation benchmarks

We used the Language Model Evaluation Harness(v.0.3.0). The details are as follows:

- Multiple-choice question answering (OpenBookQA [Mihaylov+, 2018])
- Open-ended question answering (TriviaQA [Joshi+, 2017])
- Machine reading comprehension (SQuAD 2.0 [Rajpurkar+, 2018])
- Commonsense reasoning (XWINO [Tikhonov & Ryabinin, 2021])
- Natural language inference (HellaSwag [Zellers+, 2019])
- Mathematical reasoning (GSM8k [Cobbe+, 2021])


## Usage

First install additional dependencies in [requirements.txt](./requirements.txt):

```sh
pip install -r requirements.txt
```

### Use the instruct model

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "tokyotech-llm/Swallow-7b-instruct-hf"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")


PROMPT_DICT = {
    "prompt_input": (
        "以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
        "リクエストを適切に完了するための回答を記述してください。\n\n"
        "### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"

    ),
    "prompt_no_input": (
        "以下に、あるタスクを説明する指示があります。"
        "リクエストを適切に完了するための回答を記述してください。\n\n"
        "### 指示:\n{instruction}\n\n### 応答:"
    ),
}

def create_prompt(instruction, input=None):
    """
    Generates a prompt based on the given instruction and an optional input.
    If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
    If no input is provided, it uses the 'prompt_no_input' template.

    Args:
        instruction (str): The instruction describing the task.
        input (str, optional): Additional input providing context for the task. Default is None.

    Returns:
        str: The generated prompt.
    """
    if input:
        # Use the 'prompt_input' template when additional input is provided
        return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
    else:
        # Use the 'prompt_no_input' template when no additional input is provided
        return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)

# Example usage
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
input_example = "東京工業大学の主なキャンパスについて教えてください"
prompt = create_prompt(instruction_example, input_example)

input_ids = tokenizer.encode(
    prompt,
    add_special_tokens=False,
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=128,
    temperature=0.99,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)

```

### Use the base model

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "tokyotech-llm/Swallow-7b-hf"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")

prompt = "東京工業大学の主なキャンパスは、"
input_ids = tokenizer.encode(
    prompt,
    add_special_tokens=False,
    return_tensors="pt"
)
tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=128,
    temperature=0.99,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
```

## Training Datasets

### Continual Pre-Training
The following datasets were used for continual pre-training.

- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [Swallow Corpus](https://arxiv.org/abs/2404.17733)
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)


### Instruction Tuning

The following datasets were used for the instruction tuning. 

- [Anthropic HH-RLHF](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja)
- [Databricks Dolly 15-k](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/kunishou/oasst1-89k-ja)
 
## Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

## Acknowledgements

We thank Meta Research for releasing Llama 2 under an open license for others to build on.

Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology. 

## License

Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.

## Authors

Here are the team members:
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
  - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
  - [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
  - [Hiroki Iida](https://meshidenn.github.io/)
  - [Mengsay Loem](https://loem-ms.github.io/)
  - [Shota Hirai](https://huggingface.co/Kotemo428)
  - [Kakeru Hattori](https://aya-se.vercel.app/)
  - [Masanari Ohi](https://twitter.com/stjohn2007)
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
  - [Rio Yokota](https://twitter.com/rioyokota)
  - [Kazuki Fujii](https://twitter.com/okoge_kaz)
  - [Taishi Nakamura](https://twitter.com/Setuna7777_2)

## How to cite

If you find our work helpful, please feel free to cite us.

```
@inproceedings{Fujii:COLM2024,
   title={Continual Pre-Training for Cross-Lingual LLM Adaptation:
Enhancing Japanese Language Capabilities},
   author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki
Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae
Mizuki and Rio Yokota and Naoaki Okazaki},
   booktitle="Proceedings of the First Conference on Language Modeling",
   series={COLM},
   pages="(to appear)",
   year="2024",
   month=oct,
   address={University of Pennsylvania, USA},
}

@inproceedings{Okazaki:COLM2024,
   title={Building a Large Japanese Web Corpus for Large Language Models},
   author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki
Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay
Loem and Rio Yokota and Sakae Mizuki},
   booktitle="Proceedings of the First Conference on Language Modeling",
   series={COLM},
   pages="(to appear)",
   year="2024",
   month=oct,
   address={University of Pennsylvania, USA},
}
```