metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:AdaptiveLayerLoss
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Certainly.
sentences:
- '''Of course.'''
- The idea is a good one.
- the woman is asleep at home
- source_sentence: He walked.
sentences:
- The man was walking.
- The people are running.
- The women are making pizza.
- source_sentence: Double pig.
sentences:
- Ah, triple pig!
- He had no real answer.
- Do you not know?
- source_sentence: Very simply.
sentences:
- Not complicatedly.
- People are on a beach.
- The man kicks the umpire.
- source_sentence: Introduction
sentences:
- Analytical Perspectives.
- A man reads the paper.
- No one wanted Singapore.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 94.69690706493431
energy_consumed: 0.24362341090329948
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.849
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.845554152020916
name: Pearson Cosine
- type: spearman_cosine
value: 0.8486455482928023
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8475103134032791
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8505660318245544
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8494883021932786
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8526835635349959
name: Spearman Euclidean
- type: pearson_dot
value: 0.7866563719943611
name: Pearson Dot
- type: spearman_dot
value: 0.7816258810453734
name: Spearman Dot
- type: pearson_max
value: 0.8494883021932786
name: Pearson Max
- type: spearman_max
value: 0.8526835635349959
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8182808182081737
name: Pearson Cosine
- type: spearman_cosine
value: 0.8148039503538166
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8132463174874629
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8088248622918064
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8148200486691981
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8105059611031759
name: Spearman Euclidean
- type: pearson_dot
value: 0.7499699563291125
name: Pearson Dot
- type: spearman_dot
value: 0.7350068244681712
name: Spearman Dot
- type: pearson_max
value: 0.8182808182081737
name: Pearson Max
- type: spearman_max
value: 0.8148039503538166
name: Spearman Max
SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-adaptive-layer")
# Run inference
sentences = [
'Introduction',
'Analytical Perspectives.',
'A man reads the paper.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8456 |
spearman_cosine | 0.8486 |
pearson_manhattan | 0.8475 |
spearman_manhattan | 0.8506 |
pearson_euclidean | 0.8495 |
spearman_euclidean | 0.8527 |
pearson_dot | 0.7867 |
spearman_dot | 0.7816 |
pearson_max | 0.8495 |
spearman_max | 0.8527 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8183 |
spearman_cosine | 0.8148 |
pearson_manhattan | 0.8132 |
spearman_manhattan | 0.8088 |
pearson_euclidean | 0.8148 |
spearman_euclidean | 0.8105 |
pearson_dot | 0.75 |
spearman_dot | 0.735 |
pearson_max | 0.8183 |
spearman_max | 0.8148 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at e587f0c
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3 }
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at e587f0c
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Falseper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Nonedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0.0229 | 100 | 7.0517 | 3.9378 | 0.7889 | - |
0.0459 | 200 | 4.4877 | 3.8105 | 0.7906 | - |
0.0688 | 300 | 4.0315 | 3.6401 | 0.7966 | - |
0.0918 | 400 | 3.822 | 3.3537 | 0.7883 | - |
0.1147 | 500 | 3.0608 | 2.5975 | 0.7973 | - |
0.1376 | 600 | 2.6304 | 2.3956 | 0.7943 | - |
0.1606 | 700 | 2.7723 | 2.0379 | 0.8009 | - |
0.1835 | 800 | 2.3556 | 1.9645 | 0.7984 | - |
0.2065 | 900 | 2.4998 | 1.9086 | 0.8017 | - |
0.2294 | 1000 | 2.1834 | 1.8400 | 0.7973 | - |
0.2524 | 1100 | 2.2793 | 1.5831 | 0.8102 | - |
0.2753 | 1200 | 2.1042 | 1.6485 | 0.8004 | - |
0.2982 | 1300 | 2.1365 | 1.7084 | 0.8013 | - |
0.3212 | 1400 | 2.0096 | 1.5520 | 0.8064 | - |
0.3441 | 1500 | 2.0492 | 1.4917 | 0.8084 | - |
0.3671 | 1600 | 1.8764 | 1.5447 | 0.8018 | - |
0.3900 | 1700 | 1.8611 | 1.5480 | 0.8046 | - |
0.4129 | 1800 | 1.972 | 1.5353 | 0.8075 | - |
0.4359 | 1900 | 1.8062 | 1.4633 | 0.8039 | - |
0.4588 | 2000 | 1.8565 | 1.4213 | 0.8027 | - |
0.4818 | 2100 | 1.8852 | 1.3860 | 0.8002 | - |
0.5047 | 2200 | 1.7939 | 1.5468 | 0.7910 | - |
0.5276 | 2300 | 1.7398 | 1.6041 | 0.7888 | - |
0.5506 | 2400 | 1.8535 | 1.5791 | 0.7949 | - |
0.5735 | 2500 | 1.8486 | 1.4871 | 0.7951 | - |
0.5965 | 2600 | 1.7379 | 1.5427 | 0.8019 | - |
0.6194 | 2700 | 1.7325 | 1.4585 | 0.8087 | - |
0.6423 | 2800 | 1.7664 | 1.5264 | 0.7965 | - |
0.6653 | 2900 | 1.7517 | 1.6344 | 0.7930 | - |
0.6882 | 3000 | 1.8329 | 1.4947 | 0.8008 | - |
0.7112 | 3100 | 1.7206 | 1.4917 | 0.8089 | - |
0.7341 | 3200 | 1.7138 | 1.4185 | 0.8065 | - |
0.7571 | 3300 | 1.3705 | 1.2040 | 0.8446 | - |
0.7800 | 3400 | 1.1289 | 1.1363 | 0.8447 | - |
0.8029 | 3500 | 1.0174 | 1.1049 | 0.8464 | - |
0.8259 | 3600 | 1.0188 | 1.0362 | 0.8466 | - |
0.8488 | 3700 | 0.9841 | 1.1391 | 0.8470 | - |
0.8718 | 3800 | 0.8466 | 1.0116 | 0.8485 | - |
0.8947 | 3900 | 0.9268 | 1.1323 | 0.8488 | - |
0.9176 | 4000 | 0.8686 | 1.0296 | 0.8495 | - |
0.9406 | 4100 | 0.9255 | 1.1737 | 0.8484 | - |
0.9635 | 4200 | 0.7991 | 1.0609 | 0.8486 | - |
0.9865 | 4300 | 0.8431 | 0.9976 | 0.8486 | - |
1.0 | 4359 | - | - | - | 0.8148 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.244 kWh
- Carbon Emitted: 0.095 kg of CO2
- Hours Used: 0.849 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}