Training with Prompts
Collection
See the Training with Prompts documentation for more details: https://sbert.net/examples/training/prompts/README.html
•
5 items
•
Updated
•
2
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the natural-questions dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model was trained using the script from the Training with Prompts Sentence Transformers documentation.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-nq-prompts")
# Run inference
sentences = [
'query: where does the last name francisco come from',
'document: Francisco Francisco is the Spanish and Portuguese form of the masculine given name Franciscus (corresponding to English Francis).',
'document: Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia and thwarts a genocide of her people. The story forms the core of the Jewish festival of Purim, during which it is read aloud twice: once in the evening and again the following morning. The books of Esther and Song of Songs are the only books in the Hebrew Bible that do not explicitly mention God.[2]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
NanoClimateFEVER
, NanoDBPedia
, NanoFEVER
, NanoFiQA2018
, NanoHotpotQA
, NanoMSMARCO
, NanoNFCorpus
, NanoNQ
, NanoQuoraRetrieval
, NanoSCIDOCS
, NanoArguAna
, NanoSciFact
and NanoTouche2020
InformationRetrievalEvaluator
Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.32 | 0.52 | 0.5 | 0.34 | 0.58 | 0.24 | 0.36 | 0.42 | 0.84 | 0.38 | 0.22 | 0.44 | 0.4694 |
cosine_accuracy@3 | 0.44 | 0.82 | 0.66 | 0.54 | 0.68 | 0.58 | 0.48 | 0.58 | 0.9 | 0.54 | 0.68 | 0.62 | 0.8163 |
cosine_accuracy@5 | 0.54 | 0.88 | 0.76 | 0.56 | 0.7 | 0.62 | 0.52 | 0.72 | 0.94 | 0.64 | 0.84 | 0.72 | 0.898 |
cosine_accuracy@10 | 0.72 | 0.9 | 0.84 | 0.66 | 0.72 | 0.84 | 0.58 | 0.78 | 0.96 | 0.7 | 0.94 | 0.72 | 0.9796 |
cosine_precision@1 | 0.32 | 0.52 | 0.5 | 0.34 | 0.58 | 0.24 | 0.36 | 0.42 | 0.84 | 0.38 | 0.22 | 0.44 | 0.4694 |
cosine_precision@3 | 0.1667 | 0.4733 | 0.2333 | 0.2333 | 0.2933 | 0.1933 | 0.2733 | 0.2 | 0.3667 | 0.2667 | 0.2267 | 0.22 | 0.5102 |
cosine_precision@5 | 0.128 | 0.44 | 0.16 | 0.164 | 0.188 | 0.124 | 0.244 | 0.152 | 0.244 | 0.24 | 0.168 | 0.156 | 0.4898 |
cosine_precision@10 | 0.094 | 0.4 | 0.09 | 0.1 | 0.104 | 0.084 | 0.192 | 0.082 | 0.13 | 0.168 | 0.094 | 0.082 | 0.4184 |
cosine_recall@1 | 0.1483 | 0.034 | 0.49 | 0.1884 | 0.29 | 0.24 | 0.0124 | 0.4 | 0.7407 | 0.0797 | 0.22 | 0.405 | 0.0363 |
cosine_recall@3 | 0.2283 | 0.1294 | 0.65 | 0.3364 | 0.44 | 0.58 | 0.0399 | 0.56 | 0.8547 | 0.1647 | 0.68 | 0.59 | 0.1153 |
cosine_recall@5 | 0.275 | 0.1709 | 0.74 | 0.3869 | 0.47 | 0.62 | 0.0629 | 0.69 | 0.9127 | 0.2477 | 0.84 | 0.695 | 0.179 |
cosine_recall@10 | 0.3857 | 0.2726 | 0.82 | 0.4773 | 0.52 | 0.84 | 0.075 | 0.74 | 0.95 | 0.3467 | 0.94 | 0.71 | 0.281 |
cosine_ndcg@10 | 0.3188 | 0.473 | 0.6605 | 0.3864 | 0.4999 | 0.5319 | 0.232 | 0.5749 | 0.889 | 0.3265 | 0.5876 | 0.5767 | 0.4619 |
cosine_mrr@10 | 0.4291 | 0.6735 | 0.6122 | 0.4464 | 0.6335 | 0.4349 | 0.4277 | 0.5314 | 0.88 | 0.4806 | 0.473 | 0.543 | 0.6599 |
cosine_map@100 | 0.2524 | 0.3353 | 0.6102 | 0.3311 | 0.4448 | 0.4388 | 0.0794 | 0.5242 | 0.8652 | 0.2539 | 0.4756 | 0.5335 | 0.3646 |
NanoBEIR_mean
NanoBEIREvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.433 |
cosine_accuracy@3 | 0.6413 |
cosine_accuracy@5 | 0.7183 |
cosine_accuracy@10 | 0.7954 |
cosine_precision@1 | 0.433 |
cosine_precision@3 | 0.2813 |
cosine_precision@5 | 0.2229 |
cosine_precision@10 | 0.1568 |
cosine_recall@1 | 0.2527 |
cosine_recall@3 | 0.413 |
cosine_recall@5 | 0.4838 |
cosine_recall@10 | 0.566 |
cosine_ndcg@10 | 0.5015 |
cosine_mrr@10 | 0.5558 |
cosine_map@100 | 0.4238 |
query
and answer
query | answer | |
---|---|---|
type | string | string |
details |
|
|
query | answer |
---|---|
query: who is required to report according to the hmda |
document: Home Mortgage Disclosure Act US financial institutions must report HMDA data to their regulator if they meet certain criteria, such as having assets above a specific threshold. The criteria is different for depository and non-depository institutions and are available on the FFIEC website.[4] In 2012, there were 7,400 institutions that reported a total of 18.7 million HMDA records.[5] |
query: what is the definition of endoplasmic reticulum in biology |
document: Endoplasmic reticulum The endoplasmic reticulum (ER) is a type of organelle in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most types of eukaryotic cells, but is absent from red blood cells and spermatozoa. There are two types of endoplasmic reticulum: rough and smooth. The outer (cytosolic) face of the rough endoplasmic reticulum is studded with ribosomes that are the sites of protein synthesis. The rough endoplasmic reticulum is especially prominent in cells such as hepatocytes. The smooth endoplasmic reticulum lacks ribosomes and functions in lipid manufacture and metabolism, the production of steroid hormones, and detoxification.[1] The smooth ER is especially abundant in mammalian liver and gonad cells. The lacy membranes of the endoplasmic reticulum were first seen in 1945 u... |
query: what does the ski mean in polish names |
document: Polish name Since the High Middle Ages, Polish-sounding surnames ending with the masculine -ski suffix, including -cki and -dzki, and the corresponding feminine suffix -ska/-cka/-dzka were associated with the nobility (Polish szlachta), which alone, in the early years, had such suffix distinctions.[1] They are widely popular today. |
CachedMultipleNegativesRankingLoss
with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
query
and answer
query | answer | |
---|---|---|
type | string | string |
details |
|
|
query | answer |
---|---|
query: difference between russian blue and british blue cat |
document: Russian Blue The coat is known as a "double coat", with the undercoat being soft, downy and equal in length to the guard hairs, which are an even blue with silver tips. However, the tail may have a few very dull, almost unnoticeable stripes. The coat is described as thick, plush and soft to the touch. The feeling is softer than the softest silk. The silver tips give the coat a shimmering appearance. Its eyes are almost always a dark and vivid green. Any white patches of fur or yellow eyes in adulthood are seen as flaws in show cats.[3] Russian Blues should not be confused with British Blues (which are not a distinct breed, but rather a British Shorthair with a blue coat as the British Shorthair breed itself comes in a wide variety of colors and patterns), nor the Chartreux or Korat which are two other naturally occurring breeds of blue cats, although they have similar traits. |
query: who played the little girl on mrs doubtfire |
document: Mara Wilson Mara Elizabeth Wilson[2] (born July 24, 1987) is an American writer and former child actress. She is known for playing Natalie Hillard in Mrs. Doubtfire (1993), Susan Walker in Miracle on 34th Street (1994), Matilda Wormwood in Matilda (1996) and Lily Stone in Thomas and the Magic Railroad (2000). Since retiring from film acting, Wilson has focused on writing. |
query: what year did the movie the sound of music come out |
document: The Sound of Music (film) The film was released on March 2, 1965 in the United States, initially as a limited roadshow theatrical release. Although critical response to the film was widely mixed, the film was a major commercial success, becoming the number one box office movie after four weeks, and the highest-grossing film of 1965. By November 1966, The Sound of Music had become the highest-grossing film of all-time—surpassing Gone with the Wind—and held that distinction for five years. The film was just as popular throughout the world, breaking previous box-office records in twenty-nine countries. Following an initial theatrical release that lasted four and a half years, and two successful re-releases, the film sold 283 million admissions worldwide and earned a total worldwide gross of $286,000,000. |
CachedMultipleNegativesRankingLoss
with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Trueprompts
: {'query': 'query: ', 'answer': 'document: '}batch_sampler
: no_duplicatesoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: {'query': 'query: ', 'answer': 'document: '}batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalEpoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | - | - | 0.0442 | 0.0851 | 0.0326 | 0.0282 | 0.0625 | 0.0708 | 0.0262 | 0.0331 | 0.6747 | 0.0387 | 0.2764 | 0.0617 | 0.0721 | 0.1159 |
0.0026 | 1 | 5.0875 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1289 | 50 | 2.0474 | 0.2481 | 0.2817 | 0.4560 | 0.6297 | 0.3893 | 0.4392 | 0.4501 | 0.1952 | 0.4191 | 0.8709 | 0.3251 | 0.5181 | 0.5186 | 0.4715 | 0.4588 |
0.2577 | 100 | 0.2027 | 0.1365 | 0.2906 | 0.4798 | 0.6203 | 0.3737 | 0.4823 | 0.4927 | 0.2102 | 0.5126 | 0.9027 | 0.3347 | 0.5623 | 0.5201 | 0.4721 | 0.4811 |
0.3866 | 150 | 0.14 | 0.1168 | 0.3237 | 0.4950 | 0.6585 | 0.4020 | 0.4912 | 0.5350 | 0.2362 | 0.5483 | 0.8920 | 0.3322 | 0.5817 | 0.5364 | 0.4739 | 0.5005 |
0.5155 | 200 | 0.1253 | 0.1057 | 0.3334 | 0.4953 | 0.6676 | 0.3794 | 0.5071 | 0.5386 | 0.2416 | 0.5541 | 0.8771 | 0.3281 | 0.5820 | 0.5600 | 0.4737 | 0.5029 |
0.6443 | 250 | 0.1305 | 0.1016 | 0.3252 | 0.4768 | 0.6554 | 0.3825 | 0.5010 | 0.5261 | 0.2395 | 0.5590 | 0.8878 | 0.3277 | 0.5922 | 0.5730 | 0.4624 | 0.5006 |
0.7732 | 300 | 0.1183 | 0.0965 | 0.3111 | 0.4797 | 0.6638 | 0.3649 | 0.5166 | 0.5304 | 0.2236 | 0.5619 | 0.8889 | 0.3242 | 0.5809 | 0.5681 | 0.4615 | 0.4981 |
0.9021 | 350 | 0.1102 | 0.0939 | 0.3223 | 0.4723 | 0.6682 | 0.3768 | 0.4964 | 0.5312 | 0.2307 | 0.5738 | 0.8890 | 0.3245 | 0.5873 | 0.5783 | 0.4622 | 0.5010 |
1.0 | 388 | - | - | 0.3188 | 0.4730 | 0.6605 | 0.3864 | 0.4999 | 0.5319 | 0.2320 | 0.5749 | 0.8890 | 0.3265 | 0.5876 | 0.5767 | 0.4619 | 0.5015 |
Carbon emissions were measured using CodeCarbon.
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Base model
microsoft/mpnet-base