File size: 11,510 Bytes
29ffeac 2c2fb0c 29ffeac 2c2fb0c 29ffeac 15762c0 29ffeac 15762c0 29ffeac 15762c0 29ffeac 2c2fb0c 29ffeac 0de9e75 2c2fb0c 29ffeac 15762c0 29ffeac 2c2fb0c 29ffeac 2c2fb0c 29ffeac 15762c0 29ffeac 2c2fb0c 29ffeac 15762c0 29ffeac 15762c0 29ffeac 15762c0 29ffeac 15762c0 29ffeac 15762c0 29ffeac 15762c0 29ffeac 15762c0 29ffeac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
---
language: en
license: apache-2.0
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- tomaarsen/setfit-absa-semeval-restaurants
metrics:
- accuracy
widget:
- text: bottles of wine:bottles of wine are cheap and good.
- text: world:I also ordered the Change Mojito, which was out of this world.
- text: bar:We were still sitting at the bar while we drank the sangria, but facing
away from the bar when we turned back around, the $2 was gone the people next
to us said the bartender took it.
- text: word:word of advice, save room for pasta dishes and never leave until you've
had the tiramisu.
- text: bartender:We were still sitting at the bar while we drank the sangria, but
facing away from the bar when we turned back around, the $2 was gone the people
next to us said the bartender took it.
pipeline_tag: text-classification
inference: false
co2_eq_emissions:
emissions: 18.322516829847984
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.303
hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants)
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: SemEval 2014 Task 4 (Restaurants)
type: tomaarsen/setfit-absa-semeval-restaurants
split: test
metrics:
- type: accuracy
value: 0.8623188405797102
name: Accuracy
---
# SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants)
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants) dataset that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
1. Use a spaCy model to select possible aspect span candidates.
2. **Use this SetFit model to filter these possible aspect span candidates.**
3. Use a SetFit model to classify the filtered aspect span candidates.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_lg
- **SetFitABSA Aspect Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect)
- **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity)
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
- **Training Dataset:** [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aspect | <ul><li>'staff:But the staff was so horrible to us.'</li><li>"food:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"food:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li></ul> |
| no aspect | <ul><li>"factor:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"deficiencies:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"Teodora:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8623 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect",
"tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 4 | 19.3576 | 45 |
| Label | Training Sample Count |
|:----------|:----------------------|
| no aspect | 170 |
| aspect | 255 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (5, 5)
- max_steps: 5000
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:----------:|:-------:|:-------------:|:---------------:|
| 0.0027 | 1 | 0.2498 | - |
| 0.1355 | 50 | 0.2442 | - |
| 0.2710 | 100 | 0.2462 | 0.2496 |
| 0.4065 | 150 | 0.2282 | - |
| 0.5420 | 200 | 0.0752 | 0.1686 |
| 0.6775 | 250 | 0.0124 | - |
| 0.8130 | 300 | 0.0128 | 0.1884 |
| 0.9485 | 350 | 0.0062 | - |
| 1.0840 | 400 | 0.0012 | 0.183 |
| 1.2195 | 450 | 0.0009 | - |
| 1.3550 | 500 | 0.0008 | 0.2072 |
| 1.4905 | 550 | 0.0031 | - |
| 1.6260 | 600 | 0.0006 | 0.1716 |
| 1.7615 | 650 | 0.0005 | - |
| **1.8970** | **700** | **0.0005** | **0.1666** |
| 2.0325 | 750 | 0.0005 | - |
| 2.1680 | 800 | 0.0004 | 0.2086 |
| 2.3035 | 850 | 0.0005 | - |
| 2.4390 | 900 | 0.0004 | 0.183 |
| 2.5745 | 950 | 0.0004 | - |
| 2.7100 | 1000 | 0.0036 | 0.1725 |
| 2.8455 | 1050 | 0.0004 | - |
| 2.9810 | 1100 | 0.0003 | 0.1816 |
| 3.1165 | 1150 | 0.0004 | - |
| 3.2520 | 1200 | 0.0003 | 0.1802 |
* The bold row denotes the saved checkpoint.
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.018 kg of CO2
- **Hours Used**: 0.303 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.9.16
- SetFit: 1.0.0.dev0
- Sentence Transformers: 2.2.2
- spaCy: 3.7.2
- Transformers: 4.29.0
- PyTorch: 1.13.1+cu117
- Datasets: 2.15.0
- Tokenizers: 0.13.3
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |