Edit model card

results

This model is a fine-tuned version of robzchhangte/MizBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7248
  • Accuracy: 0.5346
  • F1: 0.5346
  • Precision: 0.5346
  • Recall: 0.5346

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 15
  • eval_batch_size: 15
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.6747 0.0585 10 1.2733 0.5 0.5 0.5 0.5
1.2979 0.1170 20 1.1629 0.5219 0.5219 0.5219 0.5219
1.0906 0.1754 30 1.1048 0.5234 0.5234 0.5234 0.5234
0.9134 0.2339 40 0.8426 0.5109 0.5109 0.5109 0.5109
0.7985 0.2924 50 0.7739 0.525 0.525 0.525 0.525
0.7278 0.3509 60 0.7949 0.4969 0.4969 0.4969 0.4969
0.7522 0.4094 70 0.7225 0.525 0.525 0.525 0.525
0.7134 0.4678 80 0.7187 0.5109 0.5109 0.5109 0.5109
0.6897 0.5263 90 0.7682 0.4781 0.4781 0.4781 0.4781
0.7369 0.5848 100 0.7019 0.5078 0.5078 0.5078 0.5078
0.6917 0.6433 110 0.6980 0.5109 0.5109 0.5109 0.5109
0.698 0.7018 120 0.7038 0.5297 0.5297 0.5297 0.5297
0.6974 0.7602 130 0.7039 0.5125 0.5125 0.5125 0.5125
0.7141 0.8187 140 0.6941 0.5047 0.5047 0.5047 0.5047
0.7127 0.8772 150 0.6937 0.5 0.5 0.5 0.5
0.7007 0.9357 160 0.7047 0.5266 0.5266 0.5266 0.5266
0.7483 0.9942 170 0.6975 0.4828 0.4828 0.4828 0.4828
0.7063 1.0526 180 0.6929 0.5266 0.5266 0.5266 0.5266
0.6848 1.1111 190 0.7107 0.4797 0.4797 0.4797 0.4797
0.7014 1.1696 200 0.6891 0.5422 0.5422 0.5422 0.5422
0.7113 1.2281 210 0.6950 0.5141 0.5141 0.5141 0.5141
0.6915 1.2865 220 0.6901 0.5391 0.5391 0.5391 0.5391
0.6834 1.3450 230 0.7117 0.5188 0.5188 0.5188 0.5188
0.7032 1.4035 240 0.7029 0.5031 0.5031 0.5031 0.5031
0.6962 1.4620 250 0.6952 0.5312 0.5312 0.5312 0.5312
0.7103 1.5205 260 0.7165 0.5297 0.5297 0.5297 0.5297
0.7405 1.5789 270 0.8608 0.475 0.4750 0.475 0.475
0.7633 1.6374 280 0.6994 0.5344 0.5344 0.5344 0.5344
0.7061 1.6959 290 0.6887 0.5531 0.5531 0.5531 0.5531
0.6975 1.7544 300 0.7105 0.475 0.4750 0.475 0.475
0.7098 1.8129 310 0.6959 0.5297 0.5297 0.5297 0.5297
0.7703 1.8713 320 0.6954 0.5281 0.5281 0.5281 0.5281
0.6948 1.9298 330 0.7116 0.475 0.4750 0.475 0.475
0.689 1.9883 340 0.7261 0.475 0.4750 0.475 0.475
0.7011 2.0468 350 0.7265 0.5234 0.5234 0.5234 0.5234
0.7026 2.1053 360 0.7217 0.4734 0.4734 0.4734 0.4734
0.6837 2.1637 370 0.7001 0.4984 0.4984 0.4984 0.4984
0.6579 2.2222 380 0.7106 0.525 0.525 0.525 0.525
0.6755 2.2807 390 0.7218 0.525 0.525 0.525 0.525
0.6739 2.3392 400 0.7054 0.5172 0.5172 0.5172 0.5172
0.6757 2.3977 410 0.7015 0.5406 0.5406 0.5406 0.5406
0.7135 2.4561 420 0.7396 0.4828 0.4828 0.4828 0.4828
0.6801 2.5146 430 0.7323 0.4906 0.4906 0.4906 0.4906
0.7349 2.5731 440 0.6939 0.5047 0.5047 0.5047 0.5047
0.6813 2.6316 450 0.6957 0.5234 0.5234 0.5234 0.5234
0.7054 2.6901 460 0.7156 0.5344 0.5344 0.5344 0.5344
0.7052 2.7485 470 0.7143 0.5437 0.5437 0.5437 0.5437
0.6915 2.8070 480 0.6947 0.5062 0.5062 0.5062 0.5062
0.679 2.8655 490 0.7109 0.5312 0.5312 0.5312 0.5312
0.6729 2.9240 500 0.7442 0.4938 0.4938 0.4938 0.4938
0.7035 2.9825 510 0.7041 0.5281 0.5281 0.5281 0.5281
0.7069 3.0409 520 0.7023 0.4766 0.4766 0.4766 0.4766
0.7089 3.0994 530 0.6936 0.5359 0.5359 0.5359 0.5359
0.6675 3.1579 540 0.6931 0.5188 0.5188 0.5188 0.5188
0.6202 3.2164 550 0.8091 0.4703 0.4703 0.4703 0.4703
0.6183 3.2749 560 0.7316 0.5406 0.5406 0.5406 0.5406
0.5781 3.3333 570 0.7620 0.5437 0.5437 0.5437 0.5437
0.6383 3.3918 580 0.7552 0.5219 0.5219 0.5219 0.5219
0.628 3.4503 590 0.7266 0.5437 0.5437 0.5437 0.5437
0.6198 3.5088 600 0.7217 0.5672 0.5672 0.5672 0.5672
0.6572 3.5673 610 0.7962 0.5047 0.5047 0.5047 0.5047
0.6119 3.6257 620 0.7258 0.5563 0.5563 0.5563 0.5563
0.6651 3.6842 630 0.7445 0.55 0.55 0.55 0.55
0.5399 3.7427 640 0.8115 0.5062 0.5062 0.5062 0.5062
0.6291 3.8012 650 0.8045 0.5312 0.5312 0.5312 0.5312

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tona3738/results

Finetuned
(2)
this model