Edit model card

h2o-danube2 with ChatML template

This is a BAdam fine-tuned and LoRA+ danube2 base model. It uses the ChatML template and was trained on the Airoboros-3.2 (CC BY 4.0) dataset from jondurbin.

Quants

Thank you mradermacher!

Template

<|im_start|>user
{{instruction}}<|im_end|>
<|im_start|>assistant
{{response}}<|im_end|>

BAdam

System: You are a helpful assistant.

### model
model_name_or_path: danube2-base-chatml

### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 1
badam_start_block: 13
badam_mask_mode: scatter
seed: 314

### dataset
dataset: airoboros32
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12

### output
output_dir: airoboros32-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false

### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 2
lr_scheduler_type: cosine
warmup_ratio: 0.01
pure_bf16: true
flash_attn: fa2

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000

BAdam Training results

Training Loss Epoch Step Validation Loss
0.9124 0.2753 1000 0.9466
0.8072 0.5506 2000 0.9149
0.9017 0.8258 3000 0.8982
0.8883 1.1011 4000 0.8844
0.8405 1.3764 5000 0.8786
0.864 1.6517 6000 0.8754
0.7758 1.9270 7000 0.8752

QLoRA+

System: None

### model
model_name_or_path: airoboros32-chatml-badam

### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
loraplus_lr_ratio: 16.0
lora_rank: 8
lora_alpha: 16
use_unsloth: true
quantization_bit: 4
upcast_layernorm: true
seed: 314

### dataset
dataset: airoboros32
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12

### output
output_dir: airoboros32-chatml-badam/loraplus
logging_steps: 1
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false

### train
per_device_train_batch_size: 4
gradient_accumulation_steps: 4
learning_rate: 0.0001
num_train_epochs: 2.0
lr_scheduler_type: cosine
warmup_ratio: 0.01
bf16: true
flash_attn: fa2

### eval
val_size: 0.02
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000

QLoRA+ Training results

Training Loss Epoch Step Validation Loss
0.9691 0.2781 1000 0.8704
0.7387 0.5562 2000 0.8443
0.6769 0.8343 3000 0.8250
0.5156 1.1123 4000 0.8134
0.4142 1.3904 5000 0.8029
0.6328 1.6685 6000 0.7953
0.872 1.9466 7000 0.7927
Downloads last month
10
Safetensors
Model size
1.83B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for trollek/danube2-1.8b-airoboros-3.2

Finetuned
(13)
this model
Quantizations
1 model

Dataset used to train trollek/danube2-1.8b-airoboros-3.2

Collection including trollek/danube2-1.8b-airoboros-3.2