tsavage68's picture
End of training
7d63c55 verified
metadata
license: llama3
base_model: tsavage68/MedQA_L3_1000steps_1e6rate_SFT
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: MedQA_L3_350steps_1e7rate_03beta_CSFTDPO
    results: []

MedQA_L3_350steps_1e7rate_03beta_CSFTDPO

This model is a fine-tuned version of tsavage68/MedQA_L3_1000steps_1e6rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6516
  • Rewards/chosen: 0.2738
  • Rewards/rejected: 0.1790
  • Rewards/accuracies: 0.7099
  • Rewards/margins: 0.0948
  • Logps/rejected: -33.2582
  • Logps/chosen: -30.4158
  • Logits/rejected: -0.7313
  • Logits/chosen: -0.7305

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 350

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6925 0.0489 50 0.6930 -0.0016 -0.0023 0.5011 0.0007 -33.8624 -31.3338 -0.7320 -0.7314
0.6841 0.0977 100 0.6807 0.2459 0.2195 0.6549 0.0264 -33.1233 -30.5088 -0.7330 -0.7323
0.6524 0.1466 150 0.6658 0.3522 0.2898 0.6703 0.0624 -32.8887 -30.1544 -0.7315 -0.7308
0.631 0.1954 200 0.6545 0.1829 0.0948 0.6923 0.0881 -33.5389 -30.7188 -0.7310 -0.7303
0.6675 0.2443 250 0.6520 0.2481 0.1544 0.7121 0.0938 -33.3403 -30.5014 -0.7309 -0.7301
0.6479 0.2931 300 0.6509 0.2738 0.1773 0.7099 0.0966 -33.2640 -30.4157 -0.7310 -0.7303
0.6583 0.3420 350 0.6516 0.2738 0.1790 0.7099 0.0948 -33.2582 -30.4158 -0.7313 -0.7305

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1