metadata
license: apache-2.0
base_model: tsavage68/Summary4500_M2_200steps_1e7rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: Hyponatremia_M2_1000steps_1e7rate_05beta_CSFTDPO
results: []
Hyponatremia_M2_1000steps_1e7rate_05beta_CSFTDPO
This model is a fine-tuned version of tsavage68/Summary4500_M2_200steps_1e7rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0014
- Rewards/chosen: -1.1967
- Rewards/rejected: -19.9702
- Rewards/accuracies: 0.9980
- Rewards/margins: 18.7736
- Logps/rejected: -192.6703
- Logps/chosen: -96.1331
- Logits/rejected: -2.2591
- Logits/chosen: -2.2130
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1654 | 0.0112 | 50 | 0.1737 | -0.0508 | -1.9689 | 0.9980 | 1.9181 | -156.6675 | -93.8414 | -2.3390 | -2.2918 |
0.0004 | 0.0224 | 100 | 0.0033 | -0.7167 | -11.2258 | 0.9980 | 10.5091 | -175.1814 | -95.1731 | -2.2885 | -2.2417 |
0.0 | 0.0336 | 150 | 0.0021 | -1.0525 | -14.0087 | 0.9980 | 12.9562 | -180.7471 | -95.8447 | -2.2792 | -2.2326 |
0.0 | 0.0448 | 200 | 0.0015 | -0.9521 | -16.6286 | 0.9980 | 15.6764 | -185.9869 | -95.6440 | -2.2677 | -2.2212 |
0.0 | 0.0559 | 250 | 0.0015 | -0.9657 | -17.2380 | 0.9980 | 16.2723 | -187.2058 | -95.6713 | -2.2669 | -2.2206 |
0.0 | 0.0671 | 300 | 0.0015 | -0.9637 | -17.2446 | 0.9980 | 16.2809 | -187.2190 | -95.6673 | -2.2665 | -2.2201 |
0.0 | 0.0783 | 350 | 0.0015 | -1.1980 | -18.6860 | 0.9980 | 17.4880 | -190.1018 | -96.1359 | -2.2620 | -2.2159 |
0.0001 | 0.0895 | 400 | 0.0014 | -1.2301 | -19.6059 | 0.9980 | 18.3757 | -191.9415 | -96.2000 | -2.2577 | -2.2117 |
0.0 | 0.1007 | 450 | 0.0015 | -1.2380 | -19.6415 | 0.9980 | 18.4035 | -192.0128 | -96.2158 | -2.2573 | -2.2113 |
0.0 | 0.1119 | 500 | 0.0014 | -1.2365 | -19.6568 | 0.9980 | 18.4203 | -192.0434 | -96.2128 | -2.2581 | -2.2121 |
0.0 | 0.1231 | 550 | 0.0014 | -1.2308 | -19.8868 | 0.9980 | 18.6559 | -192.5033 | -96.2015 | -2.2587 | -2.2127 |
0.0 | 0.1343 | 600 | 0.0014 | -1.2131 | -19.8634 | 0.9980 | 18.6504 | -192.4567 | -96.1659 | -2.2581 | -2.2121 |
0.0 | 0.1454 | 650 | 0.0014 | -1.1869 | -19.8805 | 0.9980 | 18.6936 | -192.4907 | -96.1136 | -2.2606 | -2.2145 |
0.0 | 0.1566 | 700 | 0.0014 | -1.2139 | -19.9693 | 0.9980 | 18.7554 | -192.6684 | -96.1675 | -2.2588 | -2.2127 |
0.0 | 0.1678 | 750 | 0.0014 | -1.1965 | -19.9802 | 0.9980 | 18.7837 | -192.6902 | -96.1328 | -2.2595 | -2.2134 |
0.0 | 0.1790 | 800 | 0.0014 | -1.1843 | -19.9036 | 0.9980 | 18.7193 | -192.5370 | -96.1084 | -2.2606 | -2.2145 |
0.0 | 0.1902 | 850 | 0.0014 | -1.1914 | -19.9692 | 0.9980 | 18.7778 | -192.6682 | -96.1225 | -2.2591 | -2.2130 |
0.0 | 0.2014 | 900 | 0.0014 | -1.1979 | -19.9798 | 0.9980 | 18.7819 | -192.6894 | -96.1356 | -2.2589 | -2.2128 |
0.0 | 0.2126 | 950 | 0.0014 | -1.1962 | -19.9695 | 0.9980 | 18.7733 | -192.6688 | -96.1321 | -2.2591 | -2.2130 |
0.0 | 0.2238 | 1000 | 0.0014 | -1.1967 | -19.9702 | 0.9980 | 18.7736 | -192.6703 | -96.1331 | -2.2591 | -2.2130 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.0.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1