tsavage68's picture
End of training
e310d11 verified
metadata
license: apache-2.0
base_model: tsavage68/UTI_M2_1000steps_1e5rate_SFT
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: UTI_M2_200steps_1e7rate_01beta_CSFTDPO
    results: []

UTI_M2_200steps_1e7rate_01beta_CSFTDPO

This model is a fine-tuned version of tsavage68/UTI_M2_1000steps_1e5rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2079
  • Rewards/chosen: 0.4687
  • Rewards/rejected: -1.5148
  • Rewards/accuracies: 0.9000
  • Rewards/margins: 1.9835
  • Logps/rejected: -59.3138
  • Logps/chosen: -15.6076
  • Logits/rejected: -3.8213
  • Logits/chosen: -3.7441

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6928 0.3333 25 0.6881 0.0023 -0.0079 0.7300 0.0102 -44.2452 -20.2718 -3.8169 -3.7449
0.6578 0.6667 50 0.6325 0.0226 -0.1063 0.8800 0.1289 -45.2294 -20.0689 -3.8170 -3.7449
0.5691 1.0 75 0.5043 0.0873 -0.3772 0.9000 0.4645 -47.9383 -19.4217 -3.8188 -3.7462
0.3598 1.3333 100 0.3707 0.1758 -0.7982 0.8900 0.9740 -52.1479 -18.5365 -3.8221 -3.7487
0.2615 1.6667 125 0.2615 0.3619 -1.2250 0.9000 1.5869 -56.4161 -16.6756 -3.8216 -3.7458
0.2369 2.0 150 0.2166 0.4540 -1.4578 0.9000 1.9118 -58.7439 -15.7542 -3.8215 -3.7446
0.1778 2.3333 175 0.2082 0.4687 -1.5135 0.9000 1.9822 -59.3007 -15.6071 -3.8212 -3.7441
0.185 2.6667 200 0.2079 0.4687 -1.5148 0.9000 1.9835 -59.3138 -15.6076 -3.8213 -3.7441

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.0+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1