legal_deberta / README.md
tthhanh's picture
update model card README.md
ad4b9f3
|
raw
history blame
23.1 kB
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: legal_deberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal_deberta
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3745
- Law Precision: 0.8118
- Law Recall: 0.92
- Law F1: 0.8625
- Law Number: 75
- Violated by Precision: 0.8434
- Violated by Recall: 0.9333
- Violated by F1: 0.8861
- Violated by Number: 75
- Violated on Precision: 0.7532
- Violated on Recall: 0.7733
- Violated on F1: 0.7632
- Violated on Number: 75
- Violation Precision: 0.5768
- Violation Recall: 0.6705
- Violation F1: 0.6201
- Violation Number: 616
- Overall Precision: 0.6348
- Overall Recall: 0.7253
- Overall F1: 0.6770
- Overall Accuracy: 0.9495
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Law Precision | Law Recall | Law F1 | Law Number | Violated by Precision | Violated by Recall | Violated by F1 | Violated by Number | Violated on Precision | Violated on Recall | Violated on F1 | Violated on Number | Violation Precision | Violation Recall | Violation F1 | Violation Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------------:|:------------------:|:--------------:|:------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| No log | 1.0 | 45 | 0.8353 | 0.0 | 0.0 | 0.0 | 75 | 0.0 | 0.0 | 0.0 | 75 | 0.0 | 0.0 | 0.0 | 75 | 0.0 | 0.0 | 0.0 | 616 | 0.0 | 0.0 | 0.0 | 0.8060 |
| No log | 2.0 | 90 | 0.3620 | 0.0 | 0.0 | 0.0 | 75 | 0.0 | 0.0 | 0.0 | 75 | 0.0 | 0.0 | 0.0 | 75 | 0.1980 | 0.2873 | 0.2344 | 616 | 0.1928 | 0.2105 | 0.2013 | 0.8923 |
| No log | 3.0 | 135 | 0.2408 | 0.6582 | 0.6933 | 0.6753 | 75 | 0.6923 | 0.12 | 0.2045 | 75 | 0.0 | 0.0 | 0.0 | 75 | 0.3602 | 0.4432 | 0.3974 | 616 | 0.3920 | 0.3971 | 0.3946 | 0.9174 |
| No log | 4.0 | 180 | 0.2258 | 0.7229 | 0.8 | 0.7595 | 75 | 0.8788 | 0.7733 | 0.8227 | 75 | 0.3889 | 0.4667 | 0.4242 | 75 | 0.4976 | 0.5049 | 0.5012 | 616 | 0.5370 | 0.5517 | 0.5443 | 0.9346 |
| No log | 5.0 | 225 | 0.1876 | 0.6915 | 0.8667 | 0.7692 | 75 | 0.8406 | 0.7733 | 0.8056 | 75 | 0.4409 | 0.5467 | 0.4881 | 75 | 0.4716 | 0.5942 | 0.5259 | 616 | 0.5136 | 0.6302 | 0.5659 | 0.9439 |
| No log | 6.0 | 270 | 0.2125 | 0.6635 | 0.92 | 0.7709 | 75 | 0.7976 | 0.8933 | 0.8428 | 75 | 0.4842 | 0.6133 | 0.5412 | 75 | 0.4460 | 0.5763 | 0.5028 | 616 | 0.4977 | 0.6385 | 0.5594 | 0.9429 |
| No log | 7.0 | 315 | 0.2972 | 0.6091 | 0.8933 | 0.7243 | 75 | 0.7674 | 0.88 | 0.8199 | 75 | 0.5517 | 0.64 | 0.5926 | 75 | 0.4647 | 0.5455 | 0.5019 | 616 | 0.5139 | 0.6147 | 0.5598 | 0.9397 |
| No log | 8.0 | 360 | 0.2361 | 0.8333 | 0.8667 | 0.8497 | 75 | 0.8831 | 0.9067 | 0.8947 | 75 | 0.5889 | 0.7067 | 0.6424 | 75 | 0.5013 | 0.6169 | 0.5531 | 616 | 0.5643 | 0.6730 | 0.6139 | 0.9472 |
| No log | 9.0 | 405 | 0.2956 | 0.5156 | 0.88 | 0.6502 | 75 | 0.7263 | 0.92 | 0.8118 | 75 | 0.5096 | 0.7067 | 0.5922 | 75 | 0.5086 | 0.5731 | 0.5389 | 616 | 0.5299 | 0.6433 | 0.5811 | 0.9391 |
| No log | 10.0 | 450 | 0.2722 | 0.7097 | 0.88 | 0.7857 | 75 | 0.9079 | 0.92 | 0.9139 | 75 | 0.6049 | 0.6533 | 0.6282 | 75 | 0.5157 | 0.6396 | 0.5710 | 616 | 0.5700 | 0.6873 | 0.6232 | 0.9431 |
| No log | 11.0 | 495 | 0.3221 | 0.7234 | 0.9067 | 0.8047 | 75 | 0.8919 | 0.88 | 0.8859 | 75 | 0.7105 | 0.72 | 0.7152 | 75 | 0.5030 | 0.5422 | 0.5219 | 616 | 0.5749 | 0.6207 | 0.5969 | 0.9374 |
| 0.271 | 12.0 | 540 | 0.3475 | 0.6538 | 0.9067 | 0.7598 | 75 | 0.6542 | 0.9333 | 0.7692 | 75 | 0.4831 | 0.76 | 0.5907 | 75 | 0.5141 | 0.5341 | 0.5239 | 616 | 0.5408 | 0.6231 | 0.5790 | 0.9344 |
| 0.271 | 13.0 | 585 | 0.2667 | 0.7128 | 0.8933 | 0.7929 | 75 | 0.6 | 0.92 | 0.7263 | 75 | 0.5824 | 0.7067 | 0.6386 | 75 | 0.5530 | 0.6526 | 0.5987 | 616 | 0.5755 | 0.7027 | 0.6328 | 0.9484 |
| 0.271 | 14.0 | 630 | 0.2868 | 0.7113 | 0.92 | 0.8023 | 75 | 0.8642 | 0.9333 | 0.8974 | 75 | 0.6706 | 0.76 | 0.7125 | 75 | 0.5393 | 0.6347 | 0.5831 | 616 | 0.5941 | 0.6980 | 0.6419 | 0.9508 |
| 0.271 | 15.0 | 675 | 0.3035 | 0.7419 | 0.92 | 0.8214 | 75 | 0.8537 | 0.9333 | 0.8917 | 75 | 0.6471 | 0.7333 | 0.6875 | 75 | 0.5681 | 0.6769 | 0.6178 | 616 | 0.6147 | 0.7265 | 0.6659 | 0.9475 |
| 0.271 | 16.0 | 720 | 0.2746 | 0.7053 | 0.8933 | 0.7882 | 75 | 0.8861 | 0.9333 | 0.9091 | 75 | 0.6875 | 0.7333 | 0.7097 | 75 | 0.5654 | 0.6737 | 0.6148 | 616 | 0.6144 | 0.7218 | 0.6638 | 0.9523 |
| 0.271 | 17.0 | 765 | 0.2846 | 0.7907 | 0.9067 | 0.8447 | 75 | 0.9221 | 0.9467 | 0.9342 | 75 | 0.6709 | 0.7067 | 0.6883 | 75 | 0.5904 | 0.6623 | 0.6243 | 616 | 0.6431 | 0.7134 | 0.6764 | 0.9506 |
| 0.271 | 18.0 | 810 | 0.3004 | 0.75 | 0.92 | 0.8263 | 75 | 0.8434 | 0.9333 | 0.8861 | 75 | 0.6747 | 0.7467 | 0.7089 | 75 | 0.5501 | 0.6769 | 0.6070 | 616 | 0.6024 | 0.7277 | 0.6591 | 0.9464 |
| 0.271 | 19.0 | 855 | 0.3235 | 0.6832 | 0.92 | 0.7841 | 75 | 0.8214 | 0.92 | 0.8679 | 75 | 0.6667 | 0.7733 | 0.7160 | 75 | 0.5451 | 0.6867 | 0.6078 | 616 | 0.5906 | 0.7360 | 0.6554 | 0.9482 |
| 0.271 | 20.0 | 900 | 0.3274 | 0.7391 | 0.9067 | 0.8144 | 75 | 0.8861 | 0.9333 | 0.9091 | 75 | 0.6835 | 0.72 | 0.7013 | 75 | 0.5679 | 0.6786 | 0.6183 | 616 | 0.6187 | 0.7253 | 0.6678 | 0.9474 |
| 0.271 | 21.0 | 945 | 0.3756 | 0.7882 | 0.8933 | 0.8375 | 75 | 0.8537 | 0.9333 | 0.8917 | 75 | 0.6962 | 0.7333 | 0.7143 | 75 | 0.6046 | 0.6429 | 0.6231 | 616 | 0.6526 | 0.6992 | 0.6751 | 0.9468 |
| 0.271 | 22.0 | 990 | 0.3511 | 0.8072 | 0.8933 | 0.8481 | 75 | 0.8974 | 0.9333 | 0.9150 | 75 | 0.7215 | 0.76 | 0.7403 | 75 | 0.5813 | 0.6445 | 0.6112 | 616 | 0.6403 | 0.7027 | 0.6701 | 0.9460 |
| 0.007 | 23.0 | 1035 | 0.3187 | 0.8375 | 0.8933 | 0.8645 | 75 | 0.9079 | 0.92 | 0.9139 | 75 | 0.7237 | 0.7333 | 0.7285 | 75 | 0.5816 | 0.6656 | 0.6207 | 616 | 0.6414 | 0.7146 | 0.6760 | 0.9507 |
| 0.007 | 24.0 | 1080 | 0.3383 | 0.8171 | 0.8933 | 0.8535 | 75 | 0.8118 | 0.92 | 0.8625 | 75 | 0.6747 | 0.7467 | 0.7089 | 75 | 0.5727 | 0.6331 | 0.6014 | 616 | 0.6251 | 0.6920 | 0.6569 | 0.9473 |
| 0.007 | 25.0 | 1125 | 0.3231 | 0.7952 | 0.88 | 0.8354 | 75 | 0.8434 | 0.9333 | 0.8861 | 75 | 0.6667 | 0.72 | 0.6923 | 75 | 0.5524 | 0.6851 | 0.6116 | 616 | 0.6053 | 0.7277 | 0.6609 | 0.9483 |
| 0.007 | 26.0 | 1170 | 0.3099 | 0.7033 | 0.8533 | 0.7711 | 75 | 0.8642 | 0.9333 | 0.8974 | 75 | 0.7143 | 0.7333 | 0.7237 | 75 | 0.5722 | 0.6753 | 0.6195 | 616 | 0.6199 | 0.7194 | 0.6659 | 0.9509 |
| 0.007 | 27.0 | 1215 | 0.3202 | 0.7701 | 0.8933 | 0.8272 | 75 | 0.8961 | 0.92 | 0.9079 | 75 | 0.6582 | 0.6933 | 0.6753 | 75 | 0.5977 | 0.6705 | 0.6320 | 616 | 0.6435 | 0.7146 | 0.6772 | 0.9509 |
| 0.007 | 28.0 | 1260 | 0.3381 | 0.7263 | 0.92 | 0.8118 | 75 | 0.7931 | 0.92 | 0.8519 | 75 | 0.7 | 0.7467 | 0.7226 | 75 | 0.5909 | 0.6753 | 0.6303 | 616 | 0.6315 | 0.7253 | 0.6752 | 0.9496 |
| 0.007 | 29.0 | 1305 | 0.3413 | 0.7841 | 0.92 | 0.8466 | 75 | 0.7955 | 0.9333 | 0.8589 | 75 | 0.6463 | 0.7067 | 0.6752 | 75 | 0.5895 | 0.6737 | 0.6288 | 616 | 0.6310 | 0.7218 | 0.6733 | 0.95 |
| 0.007 | 30.0 | 1350 | 0.3427 | 0.8023 | 0.92 | 0.8571 | 75 | 0.8961 | 0.92 | 0.9079 | 75 | 0.6962 | 0.7333 | 0.7143 | 75 | 0.5974 | 0.6721 | 0.6325 | 616 | 0.6492 | 0.7218 | 0.6836 | 0.9508 |
| 0.007 | 31.0 | 1395 | 0.3473 | 0.8023 | 0.92 | 0.8571 | 75 | 0.8861 | 0.9333 | 0.9091 | 75 | 0.7143 | 0.7333 | 0.7237 | 75 | 0.5738 | 0.6623 | 0.6149 | 616 | 0.6317 | 0.7158 | 0.6711 | 0.9493 |
| 0.007 | 32.0 | 1440 | 0.3531 | 0.7188 | 0.92 | 0.8070 | 75 | 0.8140 | 0.9333 | 0.8696 | 75 | 0.7195 | 0.7867 | 0.7516 | 75 | 0.5740 | 0.6672 | 0.6171 | 616 | 0.6214 | 0.7241 | 0.6689 | 0.9495 |
| 0.007 | 33.0 | 1485 | 0.3556 | 0.7263 | 0.92 | 0.8118 | 75 | 0.8140 | 0.9333 | 0.8696 | 75 | 0.7108 | 0.7867 | 0.7468 | 75 | 0.5783 | 0.6656 | 0.6189 | 616 | 0.6249 | 0.7229 | 0.6703 | 0.9492 |
| 0.0009 | 34.0 | 1530 | 0.3569 | 0.7667 | 0.92 | 0.8364 | 75 | 0.8140 | 0.9333 | 0.8696 | 75 | 0.7215 | 0.76 | 0.7403 | 75 | 0.5783 | 0.6656 | 0.6189 | 616 | 0.6286 | 0.7206 | 0.6715 | 0.9493 |
| 0.0009 | 35.0 | 1575 | 0.3630 | 0.7841 | 0.92 | 0.8466 | 75 | 0.8140 | 0.9333 | 0.8696 | 75 | 0.7 | 0.7467 | 0.7226 | 75 | 0.5838 | 0.6672 | 0.6227 | 616 | 0.6326 | 0.7206 | 0.6737 | 0.9489 |
| 0.0009 | 36.0 | 1620 | 0.3624 | 0.7667 | 0.92 | 0.8364 | 75 | 0.8140 | 0.9333 | 0.8696 | 75 | 0.7179 | 0.7467 | 0.7320 | 75 | 0.5782 | 0.6721 | 0.6216 | 616 | 0.6278 | 0.7241 | 0.6726 | 0.9493 |
| 0.0009 | 37.0 | 1665 | 0.3614 | 0.7667 | 0.92 | 0.8364 | 75 | 0.8140 | 0.9333 | 0.8696 | 75 | 0.7403 | 0.76 | 0.75 | 75 | 0.5744 | 0.6705 | 0.6187 | 616 | 0.6265 | 0.7241 | 0.6718 | 0.9493 |
| 0.0009 | 38.0 | 1710 | 0.3630 | 0.7841 | 0.92 | 0.8466 | 75 | 0.8235 | 0.9333 | 0.8750 | 75 | 0.7662 | 0.7867 | 0.7763 | 75 | 0.5842 | 0.6705 | 0.6243 | 616 | 0.6385 | 0.7265 | 0.6796 | 0.9496 |
| 0.0009 | 39.0 | 1755 | 0.3645 | 0.8118 | 0.92 | 0.8625 | 75 | 0.8235 | 0.9333 | 0.8750 | 75 | 0.7662 | 0.7867 | 0.7763 | 75 | 0.5842 | 0.6705 | 0.6243 | 616 | 0.6405 | 0.7265 | 0.6808 | 0.9499 |
| 0.0009 | 40.0 | 1800 | 0.3670 | 0.8313 | 0.92 | 0.8734 | 75 | 0.8333 | 0.9333 | 0.8805 | 75 | 0.7632 | 0.7733 | 0.7682 | 75 | 0.5784 | 0.6705 | 0.6211 | 616 | 0.6374 | 0.7253 | 0.6785 | 0.9499 |
| 0.0009 | 41.0 | 1845 | 0.3693 | 0.8214 | 0.92 | 0.8679 | 75 | 0.8333 | 0.9333 | 0.8805 | 75 | 0.7632 | 0.7733 | 0.7682 | 75 | 0.5831 | 0.6721 | 0.6244 | 616 | 0.6405 | 0.7265 | 0.6808 | 0.9497 |
| 0.0009 | 42.0 | 1890 | 0.3727 | 0.7931 | 0.92 | 0.8519 | 75 | 0.8235 | 0.9333 | 0.8750 | 75 | 0.7436 | 0.7733 | 0.7582 | 75 | 0.5946 | 0.6737 | 0.6317 | 616 | 0.6456 | 0.7277 | 0.6842 | 0.9491 |
| 0.0009 | 43.0 | 1935 | 0.3739 | 0.8023 | 0.92 | 0.8571 | 75 | 0.8235 | 0.9333 | 0.8750 | 75 | 0.7160 | 0.7733 | 0.7436 | 75 | 0.5968 | 0.6753 | 0.6337 | 616 | 0.6459 | 0.7289 | 0.6849 | 0.9490 |
| 0.0009 | 44.0 | 1980 | 0.3750 | 0.8023 | 0.92 | 0.8571 | 75 | 0.8235 | 0.9333 | 0.8750 | 75 | 0.7 | 0.7467 | 0.7226 | 75 | 0.5968 | 0.6753 | 0.6337 | 616 | 0.6445 | 0.7265 | 0.6831 | 0.9490 |
| 0.0001 | 45.0 | 2025 | 0.3753 | 0.8023 | 0.92 | 0.8571 | 75 | 0.8235 | 0.9333 | 0.8750 | 75 | 0.7160 | 0.7733 | 0.7436 | 75 | 0.5932 | 0.6769 | 0.6323 | 616 | 0.6429 | 0.7301 | 0.6837 | 0.9490 |
| 0.0001 | 46.0 | 2070 | 0.3755 | 0.8023 | 0.92 | 0.8571 | 75 | 0.8235 | 0.9333 | 0.8750 | 75 | 0.7342 | 0.7733 | 0.7532 | 75 | 0.5912 | 0.6786 | 0.6319 | 616 | 0.6426 | 0.7313 | 0.6841 | 0.9492 |
| 0.0001 | 47.0 | 2115 | 0.3759 | 0.8023 | 0.92 | 0.8571 | 75 | 0.8235 | 0.9333 | 0.8750 | 75 | 0.7342 | 0.7733 | 0.7532 | 75 | 0.5896 | 0.6786 | 0.6309 | 616 | 0.6413 | 0.7313 | 0.6833 | 0.9492 |
| 0.0001 | 48.0 | 2160 | 0.3742 | 0.8118 | 0.92 | 0.8625 | 75 | 0.8434 | 0.9333 | 0.8861 | 75 | 0.7532 | 0.7733 | 0.7632 | 75 | 0.5770 | 0.6688 | 0.6195 | 616 | 0.6350 | 0.7241 | 0.6767 | 0.9493 |
| 0.0001 | 49.0 | 2205 | 0.3744 | 0.8118 | 0.92 | 0.8625 | 75 | 0.8434 | 0.9333 | 0.8861 | 75 | 0.7532 | 0.7733 | 0.7632 | 75 | 0.5760 | 0.6705 | 0.6197 | 616 | 0.6341 | 0.7253 | 0.6767 | 0.9495 |
| 0.0001 | 50.0 | 2250 | 0.3745 | 0.8118 | 0.92 | 0.8625 | 75 | 0.8434 | 0.9333 | 0.8861 | 75 | 0.7532 | 0.7733 | 0.7632 | 75 | 0.5768 | 0.6705 | 0.6201 | 616 | 0.6348 | 0.7253 | 0.6770 | 0.9495 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.4.0+cu121
- Datasets 2.15.0
- Tokenizers 0.13.3