Edit model card

engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning

This model is a fine-tuned version of barc0/Llama-3.1-ARC-Potpourri-Transduction-8B on the tttx/problem0_data, the barc0/transduction_formatted_rearc_dataset_100k and the barc0/transduction_heavy_100k_jsonl datasets. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
0.0016 1.0 1 0.0005
0.0014 2.0 2 0.0001
0.0001 3.0 3 0.0001
0.0001 4.0 4 0.0000
0.0 5.0 5 0.0000
0.0 6.0 6 0.0000
0.0 7.0 7 0.0000
0.0 8.0 8 0.0000
0.0 9.0 9 0.0000
0.0 10.0 10 0.0000

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
29
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tttx/engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning

Datasets used to train tttx/engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning