engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning
This model is a fine-tuned version of barc0/Llama-3.1-ARC-Potpourri-Transduction-8B on the tttx/problem0_data, the barc0/transduction_formatted_rearc_dataset_100k and the barc0/transduction_heavy_100k_jsonl datasets. It achieves the following results on the evaluation set:
- Loss: 0.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0016 | 1.0 | 1 | 0.0005 |
0.0014 | 2.0 | 2 | 0.0001 |
0.0001 | 3.0 | 3 | 0.0001 |
0.0001 | 4.0 | 4 | 0.0000 |
0.0 | 5.0 | 5 | 0.0000 |
0.0 | 6.0 | 6 | 0.0000 |
0.0 | 7.0 | 7 | 0.0000 |
0.0 | 8.0 | 8 | 0.0000 |
0.0 | 9.0 | 9 | 0.0000 |
0.0 | 10.0 | 10 | 0.0000 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 29
Model tree for tttx/engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct