SetFit
This is a SetFit model that can be used for Text Classification. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a SetFitHead instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | F1 | Accuracy |
---|---|---|
all | 0.9057 | 0.9573 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("twright8/setfit-oversample-labels-lobbying")
# Run inference
preds = model("Electricity market")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 21.5644 | 153 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (6, 9)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (7.928034854554858e-06, 2.7001088851580374e-05)
- head_learning_rate: 0.009321171293151879
- loss: CoSENTLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0018 | 1 | 8.669 | - |
0.0880 | 50 | 8.6617 | - |
0.1761 | 100 | 12.5549 | - |
0.2641 | 150 | 3.1895 | - |
0.3521 | 200 | 16.3181 | - |
0.4401 | 250 | 0.7513 | - |
0.5282 | 300 | 4.6653 | - |
0.0018 | 1 | 0.0059 | - |
0.0880 | 50 | 3.4564 | - |
0.1761 | 100 | 0.5523 | - |
0.2641 | 150 | 0.2372 | - |
0.3521 | 200 | 4.288 | - |
0.4401 | 250 | 0.0027 | - |
0.5282 | 300 | 0.0002 | - |
0.6162 | 350 | 0.0002 | - |
0.7042 | 400 | 0.0001 | - |
0.7923 | 450 | 0.0015 | - |
0.8803 | 500 | 3.5596 | - |
0.9683 | 550 | 0.0 | - |
1.0 | 568 | - | 10.2261 |
1.0563 | 600 | 0.0 | - |
1.1444 | 650 | 0.0011 | - |
1.2324 | 700 | 0.0013 | - |
1.3204 | 750 | 0.0037 | - |
1.4085 | 800 | 0.0013 | - |
1.4965 | 850 | 0.0002 | - |
1.5845 | 900 | 0.0 | - |
1.6725 | 950 | 0.0 | - |
1.7606 | 1000 | 0.0001 | - |
1.8486 | 1050 | 0.0001 | - |
1.9366 | 1100 | 0.0001 | - |
2.0 | 1136 | - | 8.4908 |
2.0246 | 1150 | 0.0001 | - |
2.1127 | 1200 | 0.0 | - |
2.2007 | 1250 | 0.0005 | - |
2.2887 | 1300 | 0.0004 | - |
2.3768 | 1350 | 0.0 | - |
2.4648 | 1400 | 0.0009 | - |
2.5528 | 1450 | 0.0 | - |
2.6408 | 1500 | 0.0 | - |
2.7289 | 1550 | 0.0 | - |
2.8169 | 1600 | 0.0 | - |
2.9049 | 1650 | 0.0001 | - |
2.9930 | 1700 | 0.0003 | - |
3.0 | 1704 | - | 8.5594 |
3.0810 | 1750 | 0.0001 | - |
3.1690 | 1800 | 0.0 | - |
3.2570 | 1850 | 0.0002 | - |
3.3451 | 1900 | 0.0001 | - |
3.4331 | 1950 | 0.0 | - |
3.5211 | 2000 | 0.0 | - |
3.6092 | 2050 | 0.0 | - |
3.6972 | 2100 | 0.0 | - |
3.7852 | 2150 | 0.0 | - |
3.8732 | 2200 | 0.0002 | - |
3.9613 | 2250 | 0.0001 | - |
4.0 | 2272 | - | 8.4573 |
4.0493 | 2300 | 0.0 | - |
4.1373 | 2350 | 0.0 | - |
4.2254 | 2400 | 0.0002 | - |
4.3134 | 2450 | 0.0 | - |
4.4014 | 2500 | 0.0003 | - |
4.4894 | 2550 | 0.0001 | - |
4.5775 | 2600 | 0.0001 | - |
4.6655 | 2650 | 0.0001 | - |
4.7535 | 2700 | 0.0001 | - |
4.8415 | 2750 | 0.0001 | - |
4.9296 | 2800 | 0.0012 | - |
5.0 | 2840 | - | 8.6305 |
5.0176 | 2850 | 0.0009 | - |
5.1056 | 2900 | 0.0 | - |
5.1937 | 2950 | 0.0001 | - |
5.2817 | 3000 | 0.0 | - |
5.3697 | 3050 | 0.0 | - |
5.4577 | 3100 | 0.0001 | - |
5.5458 | 3150 | 0.0007 | - |
5.6338 | 3200 | 0.0002 | - |
5.7218 | 3250 | 0.0 | - |
5.8099 | 3300 | 0.0001 | - |
5.8979 | 3350 | 0.0002 | - |
5.9859 | 3400 | 0.0 | - |
6.0 | 3408 | - | 8.9528 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu118
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 1
Inference API (serverless) has been turned off for this model.
Evaluation results
- F1 on Unknowntest set self-reported0.906
- Accuracy on Unknowntest set self-reported0.957