Edit model card

SetFit

This is a SetFit model that can be used for Text Classification. A SetFitHead instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Classification head: a SetFitHead instance
  • Maximum Sequence Length: 512 tokens
  • Number of Classes: 4 classes

Model Sources

Evaluation

Metrics

Label F1 Accuracy
all 0.9057 0.9573

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("twright8/setfit-oversample-labels-lobbying")
# Run inference
preds = model("Electricity market")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 21.5644 153

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (6, 9)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (7.928034854554858e-06, 2.7001088851580374e-05)
  • head_learning_rate: 0.009321171293151879
  • loss: CoSENTLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: True
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0018 1 8.669 -
0.0880 50 8.6617 -
0.1761 100 12.5549 -
0.2641 150 3.1895 -
0.3521 200 16.3181 -
0.4401 250 0.7513 -
0.5282 300 4.6653 -
0.0018 1 0.0059 -
0.0880 50 3.4564 -
0.1761 100 0.5523 -
0.2641 150 0.2372 -
0.3521 200 4.288 -
0.4401 250 0.0027 -
0.5282 300 0.0002 -
0.6162 350 0.0002 -
0.7042 400 0.0001 -
0.7923 450 0.0015 -
0.8803 500 3.5596 -
0.9683 550 0.0 -
1.0 568 - 10.2261
1.0563 600 0.0 -
1.1444 650 0.0011 -
1.2324 700 0.0013 -
1.3204 750 0.0037 -
1.4085 800 0.0013 -
1.4965 850 0.0002 -
1.5845 900 0.0 -
1.6725 950 0.0 -
1.7606 1000 0.0001 -
1.8486 1050 0.0001 -
1.9366 1100 0.0001 -
2.0 1136 - 8.4908
2.0246 1150 0.0001 -
2.1127 1200 0.0 -
2.2007 1250 0.0005 -
2.2887 1300 0.0004 -
2.3768 1350 0.0 -
2.4648 1400 0.0009 -
2.5528 1450 0.0 -
2.6408 1500 0.0 -
2.7289 1550 0.0 -
2.8169 1600 0.0 -
2.9049 1650 0.0001 -
2.9930 1700 0.0003 -
3.0 1704 - 8.5594
3.0810 1750 0.0001 -
3.1690 1800 0.0 -
3.2570 1850 0.0002 -
3.3451 1900 0.0001 -
3.4331 1950 0.0 -
3.5211 2000 0.0 -
3.6092 2050 0.0 -
3.6972 2100 0.0 -
3.7852 2150 0.0 -
3.8732 2200 0.0002 -
3.9613 2250 0.0001 -
4.0 2272 - 8.4573
4.0493 2300 0.0 -
4.1373 2350 0.0 -
4.2254 2400 0.0002 -
4.3134 2450 0.0 -
4.4014 2500 0.0003 -
4.4894 2550 0.0001 -
4.5775 2600 0.0001 -
4.6655 2650 0.0001 -
4.7535 2700 0.0001 -
4.8415 2750 0.0001 -
4.9296 2800 0.0012 -
5.0 2840 - 8.6305
5.0176 2850 0.0009 -
5.1056 2900 0.0 -
5.1937 2950 0.0001 -
5.2817 3000 0.0 -
5.3697 3050 0.0 -
5.4577 3100 0.0001 -
5.5458 3150 0.0007 -
5.6338 3200 0.0002 -
5.7218 3250 0.0 -
5.8099 3300 0.0001 -
5.8979 3350 0.0002 -
5.9859 3400 0.0 -
6.0 3408 - 8.9528
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.3.1+cu118
  • Datasets: 2.20.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Evaluation results