|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-summarize-ja |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-summarize-ja |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0695 |
|
- Rouge1: 0.3667 |
|
- Rouge2: 0.1678 |
|
- Rougel: 0.2998 |
|
- Rougelsum: 0.3123 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 90 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 3.3241 | 0.7 | 100 | 2.4795 | 0.2943 | 0.1245 | 0.2472 | 0.2471 | |
|
| 2.7583 | 1.4 | 200 | 2.2710 | 0.3054 | 0.1152 | 0.2539 | 0.2576 | |
|
| 2.5469 | 2.1 | 300 | 2.2936 | 0.3446 | 0.1493 | 0.2808 | 0.2887 | |
|
| 2.5335 | 2.8 | 400 | 2.1913 | 0.3228 | 0.1270 | 0.2665 | 0.2725 | |
|
| 2.4383 | 3.5 | 500 | 2.1507 | 0.3630 | 0.1671 | 0.3082 | 0.3144 | |
|
| 2.3671 | 4.2 | 600 | 2.1338 | 0.3388 | 0.1493 | 0.2814 | 0.2880 | |
|
| 2.349 | 4.9 | 700 | 2.1089 | 0.3621 | 0.1576 | 0.2980 | 0.3079 | |
|
| 2.264 | 5.6 | 800 | 2.1353 | 0.3740 | 0.1784 | 0.3083 | 0.3157 | |
|
| 2.1577 | 6.3 | 900 | 2.1101 | 0.3711 | 0.1716 | 0.3107 | 0.3166 | |
|
| 2.1315 | 7.0 | 1000 | 2.0905 | 0.3862 | 0.1826 | 0.3198 | 0.3269 | |
|
| 2.1418 | 7.7 | 1100 | 2.0893 | 0.3433 | 0.1621 | 0.2895 | 0.2963 | |
|
| 2.0744 | 8.4 | 1200 | 2.0881 | 0.3778 | 0.1834 | 0.3130 | 0.3242 | |
|
| 2.0944 | 9.1 | 1300 | 2.0709 | 0.3676 | 0.1688 | 0.3024 | 0.3140 | |
|
| 2.1015 | 9.8 | 1400 | 2.0695 | 0.3667 | 0.1678 | 0.2998 | 0.3123 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|