Files changed (1) hide show
  1. README.md +86 -4
README.md CHANGED
@@ -11,11 +11,61 @@ metrics:
11
 
12
  # DistilBERT base model (uncased)
13
 
14
- This is the [uncased DistilBERT model](https://huggingface.co/distilbert-base-uncased) fine-tuned on [Multi-Genre Natural Language Inference](https://huggingface.co/datasets/multi_nli) (MNLI) dataset for the zero-shot classification task. The model is not case-sensitive, i.e., it does not make a difference between "english" and "English".
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  ## Training
17
 
18
- Training is done on a [p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) AWS EC2 instance (1 NVIDIA Tesla V100 GPUs), with the following hyperparameters:
 
 
 
 
 
 
 
 
 
 
19
 
20
  ```
21
  $ run_glue.py \
@@ -30,8 +80,40 @@ $ run_glue.py \
30
  --output_dir /tmp/distilbert-base-uncased_mnli/
31
  ```
32
 
33
- ## Evaluation results
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  | Task | MNLI | MNLI-mm |
36
  |:----:|:----:|:----:|
37
- | | 82.0 | 82.0 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  # DistilBERT base model (uncased)
13
 
14
+
15
+ ## Table of Contents
16
+ - [Model Details](#model-details)
17
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
18
+ - [Uses](#uses)
19
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
20
+ - [Training](#training)
21
+ - [Evaluation](#evaluation)
22
+ - [Environmental Impact](#environmental-impact)
23
+
24
+
25
+
26
+ ## Model Details
27
+ **Model Description:** This is the [uncased DistilBERT model](https://huggingface.co/distilbert-base-uncased) fine-tuned on [Multi-Genre Natural Language Inference](https://huggingface.co/datasets/multi_nli) (MNLI) dataset for the zero-shot classification task.
28
+ - **Developed by:** The [Typeform](https://www.typeform.com/) team.
29
+ - **Model Type:** Zero-Shot Classification
30
+ - **Language(s):** English
31
+ - **License:** Unknown
32
+ - **Parent Model:** See the [distilbert base uncased model](https://huggingface.co/distilbert-base-uncased) for more information about the Distilled-BERT base model.
33
+
34
+
35
+ ## How to Get Started with the Model
36
+
37
+ ```python
38
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained("typeform/distilbert-base-uncased-mnli")
41
+
42
+ model = AutoModelForSequenceClassification.from_pretrained("typeform/distilbert-base-uncased-mnli")
43
+
44
+ ```
45
+
46
+ ## Uses
47
+ This model can be used for text classification tasks.
48
+
49
+
50
+ ## Risks, Limitations and Biases
51
+ **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
52
+
53
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
54
+
55
 
56
  ## Training
57
 
58
+ #### Training Data
59
+
60
+
61
+ This model of DistilBERT-uncased is pretrained on the Multi-Genre Natural Language Inference [(MultiNLI)](https://huggingface.co/datasets/multi_nli) corpus. It is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information. The corpus covers a range of genres of spoken and written text, and supports a distinctive cross-genre generalization evaluation.
62
+
63
+ This model is also **not** case-sensitive, i.e., it does not make a difference between "english" and "English".
64
+
65
+
66
+ #### Training Procedure
67
+
68
+ Training is done on a [p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) AWS EC2 with the following hyperparameters:
69
 
70
  ```
71
  $ run_glue.py \
 
80
  --output_dir /tmp/distilbert-base-uncased_mnli/
81
  ```
82
 
83
+ ## Evaluation
84
+
85
+
86
+ #### Evaluation Results
87
+ When fine-tuned on downstream tasks, this model achieves the following results:
88
+ - **Epoch = ** 5.0
89
+ - **Evaluation Accuracy =** 0.8206875508543532
90
+ - **Evaluation Loss =** 0.8706700205802917
91
+ - ** Evaluation Runtime = ** 17.8278
92
+ - ** Evaluation Samples per second = ** 551.498
93
+
94
+ MNLI and MNLI-mm results:
95
 
96
  | Task | MNLI | MNLI-mm |
97
  |:----:|:----:|:----:|
98
+ | | 82.0 | 82.0 |
99
+
100
+
101
+
102
+ ## Environmental Impact
103
+
104
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). We present the hardware type based on the [associated paper](https://arxiv.org/pdf/2105.09680.pdf).
105
+
106
+
107
+ **Hardware Type:** 1 NVIDIA Tesla V100 GPUs
108
+
109
+ **Hours used:** Unknown
110
+
111
+ **Cloud Provider:** AWS EC2 P3
112
+
113
+
114
+ **Compute Region:** Unknown
115
+
116
+
117
+
118
+ **Carbon Emitted:** (Power consumption x Time x Carbon produced based on location of power grid): Unknown
119
+