|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- cnn_dailymail |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-finetuned-cnn-v2 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: cnn_dailymail |
|
type: cnn_dailymail |
|
args: 3.0.0 |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 35.154 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-cnn-v2 |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5474 |
|
- Rouge1: 35.154 |
|
- Rouge2: 18.683 |
|
- Rougel: 30.8481 |
|
- Rougelsum: 32.9638 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 1.8823 | 1.0 | 35890 | 1.5878 | 34.9676 | 18.4927 | 30.6753 | 32.7702 | |
|
| 1.7871 | 2.0 | 71780 | 1.5709 | 34.9205 | 18.5556 | 30.6514 | 32.745 | |
|
| 1.7507 | 3.0 | 107670 | 1.5586 | 34.9825 | 18.4964 | 30.6724 | 32.7644 | |
|
| 1.7253 | 4.0 | 143560 | 1.5584 | 35.074 | 18.6171 | 30.8007 | 32.9132 | |
|
| 1.705 | 5.0 | 179450 | 1.5528 | 35.023 | 18.5787 | 30.7014 | 32.8396 | |
|
| 1.6894 | 6.0 | 215340 | 1.5518 | 35.0583 | 18.6754 | 30.791 | 32.8814 | |
|
| 1.6776 | 7.0 | 251230 | 1.5468 | 35.2236 | 18.6812 | 30.8944 | 33.0362 | |
|
| 1.6687 | 8.0 | 287120 | 1.5474 | 35.154 | 18.683 | 30.8481 | 32.9638 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.14.0 |
|
- Pytorch 1.5.0 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.10.3 |
|
|