ufal
/

DAMA-13B / README.md
Tomlim's picture
Update README.md
c48b619 verified
|
raw
history blame
6.52 kB
---
license: llama2
language:
- en
---
# DAMA
<!-- Provide a quick summary of what the model is/does. -->
## Model
LLaMA model adapted to mitigate gender bias in text generation.
For adaptation, we used **D**ebiasing **A**lgorithm through **M**odel **A**daptation (DAMA) method described in [Limisiewicz et al., 2024](https://openreview.net/pdf?id=XIZEFyVGC9).
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Tomasz Limisiewicz, David Mareček, Tomáš Musil
- **Funded by:** Grant Agency Czech Republic
- **Language(s) (NLP):** English
- **Adapted from model:** LLaMA
### Model Sizes
- **[7B](https://huggingface.co/ufal/DAMA-7B)**
- **[13B](https://huggingface.co/ufal/DAMA-13B)**
- **[33B](https://huggingface.co/ufal/DAMA-33B)**
- **[65B](https://huggingface.co/ufal/DAMA-65B)**
### Model Sources
<!-- Provide the basic links for the model. -->
- **[Repository](github.com/tomlimi/DAMA)**
- **[Paper](openreview.net/pdf?id=XIZEFyVGC9)**
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
The model mitigates the gender bias of the original model.
It is better suited for generating and processing texts in sensitive domains.
However, we recommend caution for such use cases because the models retain bias.
## Adaptation
<!-- Include image. -->
![Dama Schema](DamaSchema.png)
Schema (b) shows DAMA intervention in a LLaMA layer.
Even though `I - P_c` is depicted as a separate module, in practice, it is multiplied with the output matrix of a feed-forward layer (`W_FF`).
Therefore, DAMA is neutral to the model's parameter count and architecture.
(a) We show the behavior of the model when presented with a stereotypical prompt.
Specifically, (c) shows the projections of the feed-forward latent vector (`u`) onto the output space.
With DAMA (lower arrow), we nullify the gender component of the representation.
It results in balanced probabilities of gendered tokens in the model's output, as shown in (d).
The method for obtaining `P_c` is based on the Partial Least Square algorithm.
For more details, please refer to the [paper](https://openreview.net/pdf?id=XIZEFyVGC9).
## Evaluation
We evaluate the models on multiple benchmarks to assess gender bias and language understanding capabilities.
DAMA models are compared with the original LLaMA models.
### Bias Evaluation
We introduced a metric for evaluating gender bias in text generation.
It measures to which extent the models' output is affected by stereotypical `a_s` and factual `a_f` gender signals.
Moreover, we provide the scores for two established bias benchmarks: **WinoBias** and **Stereoset**.
### Results
| | Bias | in | LM | | WinoBias | | | StereoSet | |
|--------------------------------------------------------------------|--------|-------|--------|--------|-----------|-----------|------|-----------|------|
| | `a_s` | `a_f` | `b` | Acc | `Delta S` | `Delta G` | lms | ss | ICAT |
| LLaMA 7B | 0.235 | 0.320 | 0.072 | 59.1\% | 40.3\% | 3.0\% | 95.5 | 71.9 | 53.7 |
| DAMA 7B | -0.005 | 0.038 | -0.006 | 57.3\% | 31.5\% | 2.3\% | 95.5 | 69.3 | 58.5 |
| LLaMA 13B | 0.270 | 0.351 | 0.070 | 70.5\% | 35.7\% | -1.5\% | 95.2 | 71.4 | 54.4 |
| DAMA 13B | 0.148 | 0.222 | 0.059 | 66.4\% | 31.1\% | -1.1\% | 94.4 | 68.6 | 59.4 |
| LLaMA 33B | 0.265 | 0.343 | 0.092 | 71.0\% | 36.0\% | -4.0\% | 94.7 | 68.4 | 59.9 |
| DAMA 33B | 0.105 | 0.172 | 0.059 | 63.7\% | 26.7\% | -3.7\% | 94.8 | 65.7 | 65.0 |
| LLaMA 65B | 0.249 | 0.316 | 0.095 | 73.3\% | 35.7\% | 1.4\% | 94.9 | 69.5 | 57.9 |
| DAMA 65B | 0.185 | 0.251 | 0.100 | 71.1\% | 27.2\% | 0.8\% | 92.8 | 67.1 | 61.1 |
| Bias evaluation for the LLaMA models and their debiased instances. | | | | | | | | | |
### Performance Evaluation
To check the effect of debiasing on LM capabilities, we compute perplexity on Wikipedia corpus.
We also test performance on four language understanding end-tasks: **OpenBookQA**, **AI2 Reasoning Challenge** (Easy and Chalange Sets), and **Massive Multitask Language Understanding**.
### Results
| | Perpelexity | ARC-C | ARC-E |OBQA | MMLU |
|-----------|----------------|----------------|-----------|-----------------|-------|
| LLaMA 7B | 26.1 | 42.2 |69.1 | 57.2 | 30.3 |
| DAMA 7B | 28.9 | 41.8 | 68.3 | 56.2 | 30.8 |
| LLaMA 13B | 19.8 | 44.9 | 70.6 | 55.4 | 43.3 |
| DAMA 13B | 21.0 | 44.7 | 70.3 | 56.2 | 43.5 |
| LLaMA 33B | 20.5 | 47.4 | 72.9 | 59.2 | 55.7* |
| DAMA 33B | 19.6 | 45.2 | 71.6 | 58.2 | 56.1* |
| LLaMA 65B | 19.5 | 44.5 | 73.9 | 59.6 | ---* |
| DAMA 65B | 20.1 | 40.5 | 67.7 | 57.2 | --- * |
Performance evaluation for the \llama{} models and their debiased instances.
Due to hardware limitations, we could not run MMLU inference for 65B models.
In the evaluation of 33B model, we excluded 4\% longest prompts.
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@inproceedings{
limisiewicz2024debiasing,
title={Debiasing Algorithm through Model Adaptation},
author={Tomasz Limisiewicz and David Mare{\v{c}}ek and Tom{\'a}{\v{s}} Musil},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=XIZEFyVGC9}
}
```
## Model Card Author
[Tomasz Limisiewicz](mailto:[email protected])