Edit model card

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("uhoffmann/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'The quality of GM dealerships and our relationship with our dealers are critical to our success, now, and as we transition to our all-electric future, given that they maintain the primary sales and service interface with the end consumer of our products. In addition to the terms of our contracts with our dealers, we are regulated by various country and state franchise laws and regulations that may supersede those contractual terms and impose specific regulatory',
    'How does General[39 chars] Motors ensure quality in their dealership network?',
    "How can the public access the company's financial and legal reports?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6786
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8671
cosine_accuracy@10 0.91
cosine_precision@1 0.6786
cosine_precision@3 0.2724
cosine_precision@5 0.1734
cosine_precision@10 0.091
cosine_recall@1 0.6786
cosine_recall@3 0.8171
cosine_recall@5 0.8671
cosine_recall@10 0.91
cosine_ndcg@10 0.7949
cosine_mrr@10 0.758
cosine_map@100 0.7618

Information Retrieval

Metric Value
cosine_accuracy@1 0.6714
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8643
cosine_accuracy@10 0.9029
cosine_precision@1 0.6714
cosine_precision@3 0.2724
cosine_precision@5 0.1729
cosine_precision@10 0.0903
cosine_recall@1 0.6714
cosine_recall@3 0.8171
cosine_recall@5 0.8643
cosine_recall@10 0.9029
cosine_ndcg@10 0.7892
cosine_mrr@10 0.7525
cosine_map@100 0.7567

Information Retrieval

Metric Value
cosine_accuracy@1 0.6671
cosine_accuracy@3 0.8143
cosine_accuracy@5 0.8657
cosine_accuracy@10 0.9029
cosine_precision@1 0.6671
cosine_precision@3 0.2714
cosine_precision@5 0.1731
cosine_precision@10 0.0903
cosine_recall@1 0.6671
cosine_recall@3 0.8143
cosine_recall@5 0.8657
cosine_recall@10 0.9029
cosine_ndcg@10 0.7867
cosine_mrr@10 0.7492
cosine_map@100 0.7533

Information Retrieval

Metric Value
cosine_accuracy@1 0.6543
cosine_accuracy@3 0.8071
cosine_accuracy@5 0.8429
cosine_accuracy@10 0.9
cosine_precision@1 0.6543
cosine_precision@3 0.269
cosine_precision@5 0.1686
cosine_precision@10 0.09
cosine_recall@1 0.6543
cosine_recall@3 0.8071
cosine_recall@5 0.8429
cosine_recall@10 0.9
cosine_ndcg@10 0.7764
cosine_mrr@10 0.7369
cosine_map@100 0.7407

Information Retrieval

Metric Value
cosine_accuracy@1 0.62
cosine_accuracy@3 0.7671
cosine_accuracy@5 0.8171
cosine_accuracy@10 0.8786
cosine_precision@1 0.62
cosine_precision@3 0.2557
cosine_precision@5 0.1634
cosine_precision@10 0.0879
cosine_recall@1 0.62
cosine_recall@3 0.7671
cosine_recall@5 0.8171
cosine_recall@10 0.8786
cosine_ndcg@10 0.7483
cosine_mrr@10 0.7068
cosine_map@100 0.711

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 2 tokens
    • mean: 44.88 tokens
    • max: 272 tokens
    • min: 2 tokens
    • mean: 20.58 tokens
    • max: 45 tokens
  • Samples:
    positive anchor
    Walmart Inc. reported total revenues of $611,289 million for the fiscal year ended January 31, 2023. What was Walmart Inc.'s total revenue in the fiscal year ended January 31, 2023?
    The total equity balance of Visa Inc. as of September 30, 2023 was $38,733 million. What was the total equity of Visa Inc. as of September 30, 2023?
    Nike incorporates new technologies in its product design by using market intelligence and research, which helps its design teams identify opportunities to leverage these technologies in existing categories to respond to consumer preferences. How does Nike incorporate new technologies in its product design?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.5521 - - - - -
0.9746 12 - 0.7178 0.7352 0.7404 0.6833 0.7422
1.6244 20 0.6753 - - - - -
1.9492 24 - 0.7340 0.7452 0.7524 0.7057 0.7561
2.4365 30 0.4611 - - - - -
2.9239 36 - 0.7392 0.7509 0.7560 0.7103 0.7588
3.2487 40 0.3763 - - - - -
3.8985 48 - 0.7407 0.7533 0.7567 0.711 0.7618
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for uhoffmann/bge-base-financial-matryoshka

Finetuned
(253)
this model

Evaluation results