layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0754
  • Ignal: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11}
  • Oise: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}
  • Overall Precision: 0.0
  • Overall Recall: 0.0
  • Overall F1: 0.0
  • Overall Accuracy: 0.9670

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Ignal Oise Overall Precision Overall Recall Overall F1 Overall Accuracy
0.7198 1.0 1 0.7152 {'precision': 0.010416666666666666, 'recall': 0.09090909090909091, 'f1': 0.018691588785046728, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0052 0.0435 0.0093 0.5024
0.7121 2.0 2 0.7152 {'precision': 0.010416666666666666, 'recall': 0.09090909090909091, 'f1': 0.018691588785046728, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0052 0.0435 0.0093 0.5024
0.7191 3.0 3 0.4802 {'precision': 0.045454545454545456, 'recall': 0.09090909090909091, 'f1': 0.060606060606060615, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0222 0.0435 0.0294 0.9245
0.4799 4.0 4 0.3268 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9646
0.3263 5.0 5 0.2246 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.2269 6.0 6 0.1598 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.1625 7.0 7 0.1227 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.1246 8.0 8 0.1030 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.1042 9.0 9 0.0937 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.0942 10.0 10 0.0892 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.0888 11.0 11 0.0861 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.0834 12.0 12 0.0832 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.0768 13.0 13 0.0805 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.0745 14.0 14 0.0778 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670
0.071 15.0 15 0.0754 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.0 0.0 0.0 0.9670

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
15
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for uttam333/layoutlm-funsd

Finetuned
(137)
this model