Mistral based Models
Collection
5 items
•
Updated
•
3
Use the following dataset to fine-tune Open-Orca/Mistral-7B-OpenOrca in order to improve the model's reasoning and planning abilities.
Total 201,981 samples.
Code: https://github.com/uukuguy/speechless
Metric | Value |
---|---|
humaneval-python | 47.561 |
CodeLlama-34B-Python: 53.29
CodeLlama-34B-Instruct: 50.79
CodeLlama-13B-Instruct: 50.6
CodeLlama-34B: 45.11
CodeLlama-13B-Python: 42.89
CodeLlama-13B: 35.07
Metric | Value |
---|---|
ARC | 59.64 |
HellaSwag | 82.25 |
MMLU | 61.33 |
TruthfulQA | 48.45 |
Average | 62.92 |
lr | 2e-4 |
lr_scheduler_type | cosine |
weight_decay | 0.0 |
optim | paged_adamw_8bit |
flash_attention | True |
rerope | False |
max_new_tokens | 4096 |
num_train_epochs | 2 |
bits | 4 |
lora_r | 64 |
lora_alpha | 16 |
lora_dropout | 0.05 |
double_quant | True |
quant_type | nf4 |
dataset_format | airoboros |
mini_batch_size | 2 |
grandient_accumulation_steps | 32 |
bf16 | True |
A100-40G x 4
epoch | 2.0 |
etrain_loss | 0.4708 |
etrain_runtime | 12:12:53.64 |
etrain_samples_per_second | 9.002 |
etrain_steps_per_second | 0.07 |
eeval_loss | 0.4851 |
eeval_runtime | 0:00:10.31 |
eeval_samples_per_second | 19.385 |
eeval_steps_per_second | 4.846 |
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 55.33 |
ARC (25-shot) | 59.64 |
HellaSwag (10-shot) | 82.25 |
MMLU (5-shot) | 61.33 |
TruthfulQA (0-shot) | 48.45 |
Winogrande (5-shot) | 77.51 |
GSM8K (5-shot) | 8.26 |
DROP (3-shot) | 49.89 |