File size: 3,398 Bytes
e660c62
ade4885
 
 
 
 
 
 
 
 
 
 
 
 
e660c62
ade4885
 
 
 
 
 
 
 
 
 
 
8e1ba0d
ade4885
e660c62
ade4885
 
 
 
 
 
 
 
 
 
 
 
 
6ab09dd
 
5a73a42
 
 
 
8e1ba0d
5a73a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e1ba0d
 
 
 
 
5a73a42
 
 
ade4885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00548b8
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
datasets:
- jondurbin/airoboros-2.2
- Open-Orca/OpenOrca
- garage-bAInd/Open-Platypus
- WizardLM/WizardLM_evol_instruct_V2_196k
- TokenBender/python_eval_instruct_51k
tags:
- llama-2
- code
license: llama2
model-index:
- name: SpeechlessCoder
  results:
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 47.561
      verified: false
---

<p><h1> speechless-code-mistral-orca-7b-v1.0  </h1></p>

Use the following dataset to fine-tune Open-Orca/Mistral-7B-OpenOrca in order to improve the model's reasoning and planning abilities.

Total 201,981 samples.
- jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
- Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
- garage-bAInd/Open-Platypus: 100%, 24,926 samples.
- WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
- TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples
- Spider: 8,659 samples

Code: https://github.com/uukuguy/speechless

## HumanEval

| Metric | Value |
| --- | --- |
| humaneval-python | 47.561 |

[Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)

CodeLlama-34B-Python: 53.29

CodeLlama-34B-Instruct: 50.79

CodeLlama-13B-Instruct: 50.6

CodeLlama-34B: 45.11

CodeLlama-13B-Python: 42.89

CodeLlama-13B: 35.07

## lm-evaluation-harness

[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
| Metric | Value |
| --- | --- |
| ARC | 59.64 |
| HellaSwag | 82.25 |
| MMLU | 61.33 |
| TruthfulQA | 48.45 |
| Average | 62.92 |

## Parameters


| | |
|------ | ------ |
| lr | 2e-4 |
| lr_scheduler_type | cosine |
| weight_decay | 0.0 |
| optim | paged_adamw_8bit |
| flash_attention | True |
| rerope | False |
| max_new_tokens | 4096 |
| num_train_epochs | 2 |
| bits | 4 |
| lora_r | 64 |
| lora_alpha | 16 |
| lora_dropout | 0.05 |
| double_quant | True |
| quant_type | nf4 |
| dataset_format | airoboros |
| mini_batch_size | 2 |
| grandient_accumulation_steps | 32 |
| bf16 | True |

A100-40G x 4

| | |
|------ | ------ |
| epoch                    |                2.0 |
| etrain_loss               |             0.4708 |
| etrain_runtime            | 12:12:53.64 |
| etrain_samples_per_second |              9.002 |
| etrain_steps_per_second   |              0.07 |
| eeval_loss               |     0.4851 |
| eeval_runtime            | 0:00:10.31 |
| eeval_samples_per_second |      19.385 |
| eeval_steps_per_second   |      4.846 |


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__speechless-code-mistral-orca-7b-v1.0)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 55.33   |
| ARC (25-shot)         | 59.64          |
| HellaSwag (10-shot)   | 82.25    |
| MMLU (5-shot)         | 61.33         |
| TruthfulQA (0-shot)   | 48.45   |
| Winogrande (5-shot)   | 77.51   |
| GSM8K (5-shot)        | 8.26        |
| DROP (3-shot)         | 49.89         |