uukuguy's picture
Update README.md
1a15083 verified
|
raw
history blame
1.81 kB
metadata
language:
  - en
library_name: transformers
pipeline_tag: text-generation
datasets:
  - jondurbin/airoboros-2.2
  - Open-Orca/OpenOrca
  - garage-bAInd/Open-Platypus
  - WizardLM/WizardLM_evol_instruct_V2_196k
  - TokenBender/python_eval_instruct_51k
  - codefuse-ai/Evol-Instruction-66k
tags:
  - llama-2
  - code
license: llama2
model-index:
  - name: SpeechlessCoder
    results:
      - task:
          type: text-generation
        dataset:
          type: openai_humaneval
          name: HumanEval
        metrics:
          - name: pass@1
            type: pass@1
            value: 50
            verified: false

speechless-sparsetral-16x7b-MoE

speechless-sparsetral-16x7b-MoE is the MoE upgraded version of speechless-code-mistral-7b-v1.0. The MoE fine-tuning adopts Parameter-Efficient Sparsity Crafting (PESC), which is an efficient fine-tuning architecture that uses LoRA modules as expert models, similar to the concept of multi-loras.

Specifically, Mistral-7B-0.1 is used as the base model, with 16 experts and 4 expert outputs selected for inference. The fine-tuning dataset includes codefuse-ai/Evol-Instruction-66k to enhance the model's code generation ability. The specific datasets are as follows:

  • jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
  • Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
  • garage-bAInd/Open-Platypus: 100%, 24,926 samples.
  • WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
  • TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples
  • Spider: 8,659 samples
  • codefuse-ai/Evol-Instruction-66k: 100%, 66,862 samples