Configuration Parsing
Warning:
In adapter_config.json: "peft.task_type" must be a string
Model Info
This is a model that applies LLM2Vec to Llama-2. Only the PEFT Adapter is distributed. LLM2Vec is fine-tuned on two tasks: MNTP and SimCSE, and this repository contains the results of applying SimCSE after MNTP. For the MNTP Adapter, please refer to this link.
Model Details
Model Description
- Model type: PEFT
- Language(s) (NLP): Japanese
- License: Apache2.0
- Finetuned from model: Llama-2-7b-hf
Model Sources [optional]
- Repository: https://github.com/McGill-NLP/llm2vec
- Paper: https://arxiv.org/abs/2404.05961
Usage
- Please see original LLM2Vec repo
BenchMark
- Followings are summaries. Details are here
MTEB(Japansese)
Classification | Clustering | PairClassification | Reranking | BitextMining | Retrieval | STS | AVG | |
---|---|---|---|---|---|---|---|---|
Llama2-Llm2vec-eng | 0.527 | 0.258 | 0.501 | 0.217 | 0.275 | 0.296 | 0.765 | 0.408 |
Llama2-Llm2vec-jpn (This repo) | 0.570 | 0.365 | 0.510 | 0.349 | 0.470 | 0.417 | 0.795 | 0.498 |
Swallow-Llm2vec-jpn | 0.621 | 0.391 | 0.510 | 0.475 | 0.475 | 0.491 | 0.832 | 0.523 |
MTEB(English)
Classification | Clustering | Pair_Classification | Reranking | Retrieval | STS | 平均 | |
---|---|---|---|---|---|---|---|
Llama2-Llm2vec-eng | 0.709 | 0.386 | 0.780 | 0.588 | 0.329 | 0.723 | 0.586 |
Llama2-Llm2vec-jpn (This repo) | 0.722 | 0.428 | 0.785 | 0.594 | 0.371 | 0.717 | 0.603 |
Swallow-Llm2vec-jpn | 0.695 | 0.385 | 0.751 | 0.576 | 0.318 | 0.710 | 0.572 |
Training Details
Training Data
- Make Corpus from SimCSE from Wikipedia
- Script for making SimCSE Corpus
import argparse
import random
import re
from pathlib import Path
from datasets import load_dataset
from tqdm import tqdm
def main(args):
random.seed(args.seed)
wiki_ds = load_dataset("wikimedia/wikipedia", "20231101.ja")
sampled_index = random.sample(range(len(wiki_ds["train"])), args.N)
sample_wiki = wiki_ds["train"][sampled_index]
output_texts = []
for title, text in tqdm(zip(sample_wiki["title"], sample_wiki["text"])):
output_texts.append(title)
sentences = re.split("[\n。]", text)
for sentence in sentences:
if len(sentence) > args.min_sentence_len:
output_texts.append(sentence.strip()+"。")
with args.output_path.open(mode="w") as f:
for line in output_texts:
f.write(line)
f.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--N", default=200000, type=int)
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("-o", "--output_path", type=Path)
parser.add_argument("--min_sentence_len", default=50, type=int)
args = parser.parse_args()
main(args)
Training Hyperparameter
- simcse_dropout: 0.3
- bidirectional: true
- pooling_mode: "mean"
- remove_unused_columns: false
- learning_rate: 3e-5
- loss_scale: 20
- batch_size: 256
- gradient_accumulation_steps: 1
- max_seq_length: 128
- lora_r: 16
- torch_dtype: "bfloat16"
- attn_implementation: "flash_attention_2"
- seed: 42
- bf16: true
- gradient_checkpointing: true
Accelerator Settings
- deepspeed_config:
- gradient_accumulation_steps: 1
- gradient_clipping: 1.0
- offload_optimizer_device: nvme
- offload_optimizer_nvme_path: /nvme
- zero3_save_16bit_model: true
- zero_stage: 2
- distributed_type: DEEPSPEED
- downcast_bf16: 'no'
- dynamo_config:
- dynamo_backend: INDUCTOR
- dynamo_mode: default
- dynamo_use_dynamic: true
- dynamo_use_fullgraph: true
- enable_cpu_affinity: false
- machine_rank: 0
- main_training_function: main
- mixed_precision: bf16
- num_machines: 1
- num_processes: 2
- rdzv_backend: static
- same_network: true
- quse_cpu: false
Framework versions
- Python: 3.12.3
- PEFT 0.11.1
- Sentence Transformers: 3.0.1
- Transformers: 4.41.0
- PyTorch: 2.3.0
- Accelerate: 0.30.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
- MTEB: 1.13.0
- Downloads last month
- 4
Model tree for uzabase/LLM2Vec-Llama-2-7b-hf-wikipedia-jp-mntp-unsup-simcse
Base model
meta-llama/Llama-2-7b-hf