PEFT
Safetensors
Japanese
English
File size: 4,583 Bytes
cc15296
91b7ebd
 
cc15296
91b7ebd
 
 
 
 
 
cc15296
 
91b7ebd
cc15296
9478c1c
c1d5dc4
 
cc15296
 
 
 
 
 
 
91b7ebd
 
 
6272daa
cc15296
 
 
91b7ebd
 
cc15296
6272daa
cc15296
c1d5dc4
cc15296
6272daa
81156d0
6272daa
 
70988e6
6ff07da
70988e6
8a77cc2
6272daa
 
 
 
8a77cc2
 
 
 
 
 
6272daa
 
cc15296
632bc5f
cc15296
c1d5dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91b7ebd
 
632bc5f
c1d5dc4
 
 
 
 
 
 
91b7ebd
c1d5dc4
91b7ebd
c1d5dc4
 
 
91b7ebd
 
c1d5dc4
91b7ebd
632bc5f
91b7ebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc15296
 
632bc5f
cc15296
91b7ebd
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
base_model:
- meta-llama/Llama-2-7b-hf
library_name: peft
license: apache-2.0
datasets:
- wikimedia/wikipedia
language:
- ja
- en
---

# Model Info

This is a model that applies LLM2Vec to Llama-2. Only the PEFT Adapter is distributed.
LLM2Vec is fine-tuned on two tasks: MNTP and SimCSE, and this repository contains the results of applying SimCSE after MNTP. 
For the MNTP Adapter, please refer to [this link](https://huggingface.co/uzabase/LLM2Vec-Llama-2-7b-hf-wikipedia-jp-mntp).

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Model type:** PEFT
- **Language(s) (NLP):** Japanese
- **License:** Apache2.0
- **Finetuned from model:** [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)

### Model Sources [optional]

- **Repository:**  https://github.com/McGill-NLP/llm2vec
- **Paper:** https://arxiv.org/abs/2404.05961

# Usage

- Please see [original LLM2Vec repo](https://huggingface.co/McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse#usage)

# BenchMark
- Followings are summaries. Details are [here](https://tech.uzabase.com/entry/2024/09/30/114245)
## MTEB(Japansese)

| | Classification | Clustering | PairClassification | Reranking | BitextMining | Retrieval | STS | AVG |
| --- | ---: | ---: | ---: | ---: | ---: |  ---: | ---: | ---: |
| Llama2-Llm2vec-eng | 0.527 | 0.258 | 0.501 | 0.217 | 0.275 | 0.296 | 0.765 | 0.408 |
| **Llama2-Llm2vec-jpn (This repo)** | 0.570 | 0.365 | 0.510 | 0.349 | 0.470 | 0.417 | 0.795 | 0.498 |
| Swallow-Llm2vec-jpn | 0.621 | 0.391 | 0.510 | 0.475 | 0.475 | 0.491 | 0.832 | 0.523 |

## MTEB(English)

| |	Classification | Clustering | Pair_Classification| Reranking | Retrieval | STS | 平均 |
| --- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Llama2-Llm2vec-eng | 0.709 | 0.386 |	0.780 |	0.588 | 0.329| 0.723 | 0.586 |
| **Llama2-Llm2vec-jpn (This repo)** | 0.722 | 0.428 |	0.785 |	0.594 |	0.371 | 0.717 | 0.603 |
| Swallow-Llm2vec-jpn |	0.695 |	0.385 |	0.751 |	0.576 |	0.318 | 0.710 | 0.572 |


# Training Details

## Training Data

- Make Corpus from SimCSE from [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia)
- Script for making SimCSE Corpus
```
import argparse
import random
import re
from pathlib import Path
from datasets import load_dataset
from tqdm import tqdm

def main(args):
    random.seed(args.seed)
    wiki_ds = load_dataset("wikimedia/wikipedia", "20231101.ja")
    sampled_index = random.sample(range(len(wiki_ds["train"])), args.N)
    sample_wiki = wiki_ds["train"][sampled_index]
    output_texts = []
    for title, text in tqdm(zip(sample_wiki["title"], sample_wiki["text"])):
        output_texts.append(title)
        sentences = re.split("[\n。]", text)
        for sentence in sentences:
            if len(sentence) > args.min_sentence_len: 
                output_texts.append(sentence.strip()+"。")
    with args.output_path.open(mode="w") as f:
        for line in output_texts:
            f.write(line)
            f.write("\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--N", default=200000, type=int)
    parser.add_argument("--seed", default=42, type=int)
    parser.add_argument("-o", "--output_path", type=Path)
    parser.add_argument("--min_sentence_len", default=50, type=int)

    args = parser.parse_args()
    main(args)
```
  


## Training Hyperparameter
- simcse_dropout: 0.3
- bidirectional: true
- pooling_mode: "mean"
- remove_unused_columns: false
- learning_rate: 3e-5
- loss_scale: 20
- batch_size: 256
- gradient_accumulation_steps: 1
- max_seq_length: 128
- lora_r: 16
- torch_dtype: "bfloat16"
- attn_implementation: "flash_attention_2"
- seed: 42
- bf16: true
- gradient_checkpointing: true
    

## Accelerator Settings
- deepspeed_config:
  - gradient_accumulation_steps: 1
  - gradient_clipping: 1.0
  - offload_optimizer_device: nvme
  - offload_optimizer_nvme_path: /nvme
  - zero3_save_16bit_model: true
  - zero_stage: 2 
- distributed_type: DEEPSPEED
- downcast_bf16: 'no'
- dynamo_config:
  - dynamo_backend: INDUCTOR
  - dynamo_mode: default
  - dynamo_use_dynamic: true
  - dynamo_use_fullgraph: true
- enable_cpu_affinity: false
- machine_rank: 0
- main_training_function: main
- mixed_precision: bf16
- num_machines: 1
- num_processes: 2
- rdzv_backend: static
- same_network: true
- quse_cpu: false


## Framework versions

- Python: 3.12.3
- PEFT 0.11.1
- Sentence Transformers: 3.0.1
- Transformers: 4.41.0
- PyTorch: 2.3.0
- Accelerate: 0.30.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
- MTEB: 1.13.0