whisper-small-bb / README.md
vahn98's picture
End of training
a8ac505 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - vahn98/bb-audio-wp
metrics:
  - wer
model-index:
  - name: Whisper-bb
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audio-bb
          type: vahn98/bb-audio-wp
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 79.59183673469387

Whisper-bb

This model is a fine-tuned version of openai/whisper-small on the audio-bb dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3749
  • Wer: 79.5918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0 1000.0 1000 1.3448 51.0204
0.0 2000.0 2000 1.3630 79.5918
0.0 3000.0 3000 1.3730 79.5918
0.0 4000.0 4000 1.3749 79.5918

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1