supermario_v4 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
f096135 verified
|
raw
history blame
4.12 kB
metadata
license: apache-2.0
tags:
  - mergekit
  - merge
base_model: []
model-index:
  - name: supermario_v4
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 73.46
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vanillaOVO/supermario_v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 88.77
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vanillaOVO/supermario_v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.41
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vanillaOVO/supermario_v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 72.07
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vanillaOVO/supermario_v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 85.24
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vanillaOVO/supermario_v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.13
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vanillaOVO/supermario_v4
          name: Open LLM Leaderboard

This is a merge of pre-trained language models created based on DARE using mergekit.

More descriptions of the model will be added soon.

Loading the Model

Use the following Python code to load the model:

import torch
from transformers import MistralForCausalLM, AutoTokenizer

model = MistralForCausalLM.from_pretrained("vanillaOVO/supermario_v4", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("vanillaOVO/supermario_v4")

Generating Text

To generate text, use the following Python code:

text = "Large language models are "
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.85
AI2 Reasoning Challenge (25-Shot) 73.46
HellaSwag (10-Shot) 88.77
MMLU (5-Shot) 65.41
TruthfulQA (0-shot) 72.07
Winogrande (5-shot) 85.24
GSM8k (5-shot) 70.13