varcoder's picture
update model card README.md
243b46f
---
license: other
base_model: nvidia/mit-b5
tags:
- generated_from_trainer
model-index:
- name: segcrack9k_conglomerate_segformer_aug
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segcrack9k_conglomerate_segformer_aug
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0362
- Mean Iou: 0.3412
- Mean Accuracy: 0.6823
- Overall Accuracy: 0.6823
- Accuracy Background: nan
- Accuracy Crack: 0.6823
- Iou Background: 0.0
- Iou Crack: 0.6823
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.0323 | 0.14 | 1000 | 0.0445 | 0.3573 | 0.7146 | 0.7146 | nan | 0.7146 | 0.0 | 0.7146 |
| 0.0222 | 0.27 | 2000 | 0.0394 | 0.3591 | 0.7181 | 0.7181 | nan | 0.7181 | 0.0 | 0.7181 |
| 0.0335 | 0.41 | 3000 | 0.0404 | 0.2907 | 0.5813 | 0.5813 | nan | 0.5813 | 0.0 | 0.5813 |
| 0.013 | 0.54 | 4000 | 0.0384 | 0.3244 | 0.6489 | 0.6489 | nan | 0.6489 | 0.0 | 0.6489 |
| 0.0159 | 0.68 | 5000 | 0.0382 | 0.3088 | 0.6176 | 0.6176 | nan | 0.6176 | 0.0 | 0.6176 |
| 0.0608 | 0.81 | 6000 | 0.0366 | 0.3251 | 0.6502 | 0.6502 | nan | 0.6502 | 0.0 | 0.6502 |
| 0.1738 | 0.95 | 7000 | 0.0362 | 0.3412 | 0.6823 | 0.6823 | nan | 0.6823 | 0.0 | 0.6823 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3