metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Żywot św. Stanisława
sentences:
- czym różni się Żywot św. Stanisława od Legendy św. Stanisława?
- kto uczył malarstwa olimpijczyka Bronisława Czecha?
- St. Louis Eagles
- source_sentence: Jaakow Jicchak Szapira
sentences:
- czym jest Kompas Sztuki?
- z czego wykonana jest rzeźba Robotnik i kołchoźnica?
- podczas którego soboru zostało ogłoszone chalcedońskie wyznanie wiary?
- source_sentence: Chłopiec z Nariokotome
sentences:
- ile wynosiła objętość mózgu chłopca z Nariokotome?
- jaki pomnik odsłonięto we Lwowie 3 lipca 2011 roku?
- Voyager 2 Voyager Golden Record Pale Blue Dot
- source_sentence: skąd pochodzi wino cirò?
sentences:
- skąd pochodzi nazwa Kotylniczy Wierch?
- do czego współcześnie wykorzystuje się papier amate?
- erystyka sofizmat błędy logiczno-językowe onus probandi
- source_sentence: Sen o zastrzyku Irmy
sentences:
- gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?
- ile razy Srebrna Biblia była przywożona do Szwecji?
- Voyager 2 Voyager Golden Record Pale Blue Dot
model-index:
- name: all-MiniLM-L6-v2-klej-dyk-v0.1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.19951923076923078
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.43028846153846156
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5384615384615384
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6225961538461539
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.19951923076923078
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14342948717948717
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10769230769230768
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06225961538461538
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19951923076923078
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.43028846153846156
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5384615384615384
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6225961538461539
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4067615454626299
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3376678876678877
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3451711286911671
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.18509615384615385
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.41346153846153844
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5096153846153846
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6033653846153846
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18509615384615385
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1378205128205128
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10192307692307692
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06033653846153846
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18509615384615385
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.41346153846153844
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5096153846153846
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6033653846153846
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.39112028533472887
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.32341746794871795
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3303671597529028
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.18028846153846154
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.35336538461538464
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4423076923076923
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5192307692307693
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18028846153846154
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11778846153846154
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08846153846153845
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05192307692307692
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18028846153846154
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.35336538461538464
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4423076923076923
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5192307692307693
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3443315125767603
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2888621794871794
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2960334956693037
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.13701923076923078
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2644230769230769
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32211538461538464
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3798076923076923
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.13701923076923078
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08814102564102563
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06442307692307693
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03798076923076923
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.13701923076923078
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2644230769230769
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.32211538461538464
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3798076923076923
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2529381675019326
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21289396367521363
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2208612925846397
name: Cosine Map@100
all-MiniLM-L6-v2-klej-dyk-v0.1
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Sen o zastrzyku Irmy',
'gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?',
'ile razy Srebrna Biblia była przywożona do Szwecji?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1995 |
cosine_accuracy@3 |
0.4303 |
cosine_accuracy@5 |
0.5385 |
cosine_accuracy@10 |
0.6226 |
cosine_precision@1 |
0.1995 |
cosine_precision@3 |
0.1434 |
cosine_precision@5 |
0.1077 |
cosine_precision@10 |
0.0623 |
cosine_recall@1 |
0.1995 |
cosine_recall@3 |
0.4303 |
cosine_recall@5 |
0.5385 |
cosine_recall@10 |
0.6226 |
cosine_ndcg@10 |
0.4068 |
cosine_mrr@10 |
0.3377 |
cosine_map@100 |
0.3452 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1851 |
cosine_accuracy@3 |
0.4135 |
cosine_accuracy@5 |
0.5096 |
cosine_accuracy@10 |
0.6034 |
cosine_precision@1 |
0.1851 |
cosine_precision@3 |
0.1378 |
cosine_precision@5 |
0.1019 |
cosine_precision@10 |
0.0603 |
cosine_recall@1 |
0.1851 |
cosine_recall@3 |
0.4135 |
cosine_recall@5 |
0.5096 |
cosine_recall@10 |
0.6034 |
cosine_ndcg@10 |
0.3911 |
cosine_mrr@10 |
0.3234 |
cosine_map@100 |
0.3304 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1803 |
cosine_accuracy@3 |
0.3534 |
cosine_accuracy@5 |
0.4423 |
cosine_accuracy@10 |
0.5192 |
cosine_precision@1 |
0.1803 |
cosine_precision@3 |
0.1178 |
cosine_precision@5 |
0.0885 |
cosine_precision@10 |
0.0519 |
cosine_recall@1 |
0.1803 |
cosine_recall@3 |
0.3534 |
cosine_recall@5 |
0.4423 |
cosine_recall@10 |
0.5192 |
cosine_ndcg@10 |
0.3443 |
cosine_mrr@10 |
0.2889 |
cosine_map@100 |
0.296 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.137 |
cosine_accuracy@3 |
0.2644 |
cosine_accuracy@5 |
0.3221 |
cosine_accuracy@10 |
0.3798 |
cosine_precision@1 |
0.137 |
cosine_precision@3 |
0.0881 |
cosine_precision@5 |
0.0644 |
cosine_precision@10 |
0.038 |
cosine_recall@1 |
0.137 |
cosine_recall@3 |
0.2644 |
cosine_recall@5 |
0.3221 |
cosine_recall@10 |
0.3798 |
cosine_ndcg@10 |
0.2529 |
cosine_mrr@10 |
0.2129 |
cosine_map@100 |
0.2209 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 7 tokens
- mean: 87.54 tokens
- max: 256 tokens
|
- min: 9 tokens
- mean: 30.98 tokens
- max: 76 tokens
|
- Samples:
positive |
anchor |
Zespół Blaua (zespół Jabsa, ang. Blau syndrome, BS) – rzadka choroba genetyczna o dziedziczeniu autosomalnym dominującym, charakteryzująca się ziarniniakowym zapaleniem stawów o wczesnym początku, zapaleniem jagodówki (uveitis) i wysypką skórną, a także kamptodaktylią. |
jakie choroby genetyczne dziedziczą się autosomalnie dominująco? |
Gorgippia Gorgippia – starożytne miasto bosporańskie nad Morzem Czarnym, którego pozostałości znajdują się obecnie pod współczesną zabudową centralnej części miasta Anapa w Kraju Krasnodarskim w Rosji. |
gdzie obecnie znajduje się starożytne miasto Gorgippia? |
Ulubionym dystansem Rücker było 400 metrów i to na nim notowała największe indywidualne sukcesy : srebrny medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) 6. miejsce w Pucharze Świata w Lekkoatletyce (Hawana 1992) 5. miejsce na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) srebro podczas Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) złota medalistka mistrzostw Niemiec Duże sukcesy odnosiła także w sztafecie 4 x 400 metrów : złoto Mistrzostw Europy juniorów w lekkoatletyce (Varaždin 1989) złoty medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) brąz na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) brązowy medal podczas Igrzysk Olimpijskich (Atlanta 1996) brąz na Halowych Mistrzostwach Świata w Lekkoatletyce (Paryż 1997) złoto Mistrzostw Świata w Lekkoatletyce (Ateny 1997) brązowy medal Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) |
kto zaprojektował medale, które będą wręczane podczas tegorocznych mistrzostw Europy juniorów w lekkoatletyce? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
gradient_accumulation_steps
: 32
learning_rate
: 2e-05
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 32
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_384_cosine_map@100 |
dim_64_cosine_map@100 |
0 |
0 |
- |
0.1945 |
0.2243 |
0.2302 |
0.1499 |
0.2735 |
1 |
8.2585 |
- |
- |
- |
- |
0.5470 |
2 |
8.4215 |
- |
- |
- |
- |
0.8205 |
3 |
7.899 |
0.2205 |
0.2510 |
0.2597 |
0.1677 |
1.0855 |
4 |
6.5734 |
- |
- |
- |
- |
1.3590 |
5 |
6.2406 |
- |
- |
- |
- |
1.6325 |
6 |
6.0949 |
- |
- |
- |
- |
1.9060 |
7 |
5.7149 |
0.2736 |
0.3061 |
0.3224 |
0.2124 |
2.1709 |
8 |
5.153 |
- |
- |
- |
- |
2.4444 |
9 |
5.3615 |
- |
- |
- |
- |
2.7179 |
10 |
5.3069 |
- |
- |
- |
- |
2.9915 |
11 |
5.1567 |
0.2914 |
0.3238 |
0.3402 |
0.2191 |
3.2564 |
12 |
4.6824 |
- |
- |
- |
- |
3.5299 |
13 |
5.1072 |
- |
- |
- |
- |
3.8034 |
14 |
5.1575 |
0.2967 |
0.3302 |
0.3443 |
0.2196 |
4.0684 |
15 |
4.5651 |
0.2960 |
0.3304 |
0.3452 |
0.2209 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}