metadata
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: USS Conyngham (DD-58)
sentences:
- '"w jakich patrolach uczestniczył USS ""Conyngham"" (DD-58)?"'
- Jest ona najstarszą skoczkinią w kadrze norweskiej.
- kto uczył malarstwa olimpijczyka Bronisława Czecha?
- source_sentence: Danae (obraz Tycjana)
sentences:
- >-
jakie różnice występują pomiędzy kolejnymi wersjami obrazu Tycjana
Danae?
- z czego wykonana jest rzeźba Robotnik i kołchoźnica?
- z jakiego powodu zwołano synod w Whitby?
- source_sentence: dlaczego zapominamy?
sentences:
- Zamek w Haapsalu
- kto był tłumaczem języka angielskiego u Mao Zedonga?
- Najstarszy z trzech synów Hong Xiuquana; jego matką była Lai Lianying.
- source_sentence: kim był Steve Yzerman?
sentences:
- która hala ma najmniejszą widownię w NHL?
- za co krytykowany był papieski wykład ratyzboński?
- ' W 1867 oddano do użytku Kolej Warszawsko-Terespolską (całą linię).'
- source_sentence: Herkules na rozstajach
sentences:
- jak zinterpretować wymowę obrazu Herkules na rozstajach?
- Dowódcą grupy był Wiaczesław Razumowicz ps. „Chmara”.
- z jakiego powodu zwołano synod w Whitby?
model-index:
- name: bge-base-en-v1.5-klej-dyk
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.17307692307692307
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.46153846153846156
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6225961538461539
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7355769230769231
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.17307692307692307
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15384615384615385
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12451923076923076
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0735576923076923
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.17307692307692307
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.46153846153846156
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6225961538461539
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7355769230769231
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4433646681639308
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.35053323412698395
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3573926265146405
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.16826923076923078
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4519230769230769
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6009615384615384
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7091346153846154
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.16826923076923078
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15064102564102563
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1201923076923077
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07091346153846154
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16826923076923078
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4519230769230769
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6009615384615384
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7091346153846154
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.42955891948336516
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3405992445054941
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3484580834493777
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.19230769230769232
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4543269230769231
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5913461538461539
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6899038461538461
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.19230769230769232
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15144230769230768
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11826923076923078
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0689903846153846
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19230769230769232
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4543269230769231
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5913461538461539
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6899038461538461
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4311008111471328
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3488247863247859
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3560982492053804
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.16346153846153846
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.41586538461538464
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5168269230769231
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5985576923076923
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.16346153846153846
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13862179487179488
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10336538461538461
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.059855769230769226
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16346153846153846
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.41586538461538464
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5168269230769231
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5985576923076923
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.37641559536404157
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3052140567765567
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3151839890893904
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.1658653846153846
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.35096153846153844
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.43990384615384615
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5288461538461539
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1658653846153846
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11698717948717949
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08798076923076924
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.052884615384615384
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1658653846153846
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.35096153846153844
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.43990384615384615
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5288461538461539
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.33823482580826353
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.27800194597069605
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2876731521968676
name: Cosine Map@100
bge-base-en-v1.5-klej-dyk
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Herkules na rozstajach',
'jak zinterpretować wymowę obrazu Herkules na rozstajach?',
'Dowódcą grupy był Wiaczesław Razumowicz ps. „Chmara”.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1731 |
cosine_accuracy@3 |
0.4615 |
cosine_accuracy@5 |
0.6226 |
cosine_accuracy@10 |
0.7356 |
cosine_precision@1 |
0.1731 |
cosine_precision@3 |
0.1538 |
cosine_precision@5 |
0.1245 |
cosine_precision@10 |
0.0736 |
cosine_recall@1 |
0.1731 |
cosine_recall@3 |
0.4615 |
cosine_recall@5 |
0.6226 |
cosine_recall@10 |
0.7356 |
cosine_ndcg@10 |
0.4434 |
cosine_mrr@10 |
0.3505 |
cosine_map@100 |
0.3574 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1683 |
cosine_accuracy@3 |
0.4519 |
cosine_accuracy@5 |
0.601 |
cosine_accuracy@10 |
0.7091 |
cosine_precision@1 |
0.1683 |
cosine_precision@3 |
0.1506 |
cosine_precision@5 |
0.1202 |
cosine_precision@10 |
0.0709 |
cosine_recall@1 |
0.1683 |
cosine_recall@3 |
0.4519 |
cosine_recall@5 |
0.601 |
cosine_recall@10 |
0.7091 |
cosine_ndcg@10 |
0.4296 |
cosine_mrr@10 |
0.3406 |
cosine_map@100 |
0.3485 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1923 |
cosine_accuracy@3 |
0.4543 |
cosine_accuracy@5 |
0.5913 |
cosine_accuracy@10 |
0.6899 |
cosine_precision@1 |
0.1923 |
cosine_precision@3 |
0.1514 |
cosine_precision@5 |
0.1183 |
cosine_precision@10 |
0.069 |
cosine_recall@1 |
0.1923 |
cosine_recall@3 |
0.4543 |
cosine_recall@5 |
0.5913 |
cosine_recall@10 |
0.6899 |
cosine_ndcg@10 |
0.4311 |
cosine_mrr@10 |
0.3488 |
cosine_map@100 |
0.3561 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1635 |
cosine_accuracy@3 |
0.4159 |
cosine_accuracy@5 |
0.5168 |
cosine_accuracy@10 |
0.5986 |
cosine_precision@1 |
0.1635 |
cosine_precision@3 |
0.1386 |
cosine_precision@5 |
0.1034 |
cosine_precision@10 |
0.0599 |
cosine_recall@1 |
0.1635 |
cosine_recall@3 |
0.4159 |
cosine_recall@5 |
0.5168 |
cosine_recall@10 |
0.5986 |
cosine_ndcg@10 |
0.3764 |
cosine_mrr@10 |
0.3052 |
cosine_map@100 |
0.3152 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1659 |
cosine_accuracy@3 |
0.351 |
cosine_accuracy@5 |
0.4399 |
cosine_accuracy@10 |
0.5288 |
cosine_precision@1 |
0.1659 |
cosine_precision@3 |
0.117 |
cosine_precision@5 |
0.088 |
cosine_precision@10 |
0.0529 |
cosine_recall@1 |
0.1659 |
cosine_recall@3 |
0.351 |
cosine_recall@5 |
0.4399 |
cosine_recall@10 |
0.5288 |
cosine_ndcg@10 |
0.3382 |
cosine_mrr@10 |
0.278 |
cosine_map@100 |
0.2877 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 90.01 tokens
- max: 512 tokens
|
- min: 10 tokens
- mean: 30.82 tokens
- max: 76 tokens
|
- Samples:
positive |
anchor |
Londyńska premiera w Ambassadors Theatre na londyńskim West Endzie miała miejsce 25 listopada 1952 roku, a przedstawione grane jest do dziś (od 1974 r.) w sąsiednim St Martin's Theatre. W Polsce była wystawiana m.in. w Teatrze Nowym w Zabrzu. |
w którym londyńskim muzeum wystawiana była instalacja My Bed? |
Theridion grallator osiąga długość 5 mm. U niektórych postaci na żółtym odwłoku występuje wzór przypominający uśmiechniętą lub śmiejącą się twarz klowna. |
które pająki noszą na grzbiecie wzór przypominający uśmiechniętego klauna? |
W 1998 w wyniku sporów o wytyczenie granicy między dwoma państwami wybuchła wojna erytrejsko-etiopska. Zakończyła się porozumieniem zawartym w Algierze 12 grudnia 2000. Od tego czasu strefa graniczna jest patrolowana przez siły pokojowe ONZ. |
jakie były skutki wojny erytrejsko-etiopskiej? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.0684 |
1 |
7.2706 |
- |
- |
- |
- |
- |
0.1368 |
2 |
8.2776 |
- |
- |
- |
- |
- |
0.2051 |
3 |
7.1399 |
- |
- |
- |
- |
- |
0.2735 |
4 |
6.6905 |
- |
- |
- |
- |
- |
0.3419 |
5 |
6.735 |
- |
- |
- |
- |
- |
0.4103 |
6 |
7.0537 |
- |
- |
- |
- |
- |
0.4786 |
7 |
6.871 |
- |
- |
- |
- |
- |
0.5470 |
8 |
6.7277 |
- |
- |
- |
- |
- |
0.6154 |
9 |
5.9853 |
- |
- |
- |
- |
- |
0.6838 |
10 |
6.0518 |
- |
- |
- |
- |
- |
0.7521 |
11 |
5.8291 |
- |
- |
- |
- |
- |
0.8205 |
12 |
5.0064 |
- |
- |
- |
- |
- |
0.8889 |
13 |
4.8572 |
- |
- |
- |
- |
- |
0.9573 |
14 |
5.1899 |
0.2812 |
0.3335 |
0.3486 |
0.2115 |
0.3639 |
1.0256 |
15 |
4.2996 |
- |
- |
- |
- |
- |
1.0940 |
16 |
4.1475 |
- |
- |
- |
- |
- |
1.1624 |
17 |
4.6174 |
- |
- |
- |
- |
- |
1.2308 |
18 |
4.394 |
- |
- |
- |
- |
- |
1.2991 |
19 |
4.0255 |
- |
- |
- |
- |
- |
1.3675 |
20 |
3.9722 |
- |
- |
- |
- |
- |
1.4359 |
21 |
3.9509 |
- |
- |
- |
- |
- |
1.5043 |
22 |
3.7674 |
- |
- |
- |
- |
- |
1.5726 |
23 |
3.7572 |
- |
- |
- |
- |
- |
1.6410 |
24 |
3.9463 |
- |
- |
- |
- |
- |
1.7094 |
25 |
3.7151 |
- |
- |
- |
- |
- |
1.7778 |
26 |
3.7771 |
- |
- |
- |
- |
- |
1.8462 |
27 |
3.5228 |
- |
- |
- |
- |
- |
1.9145 |
28 |
2.7906 |
- |
- |
- |
- |
- |
1.9829 |
29 |
3.4555 |
0.3164 |
0.3529 |
0.3641 |
0.2636 |
0.3681 |
2.0513 |
30 |
2.737 |
- |
- |
- |
- |
- |
2.1197 |
31 |
3.1976 |
- |
- |
- |
- |
- |
2.1880 |
32 |
3.1363 |
- |
- |
- |
- |
- |
2.2564 |
33 |
2.9706 |
- |
- |
- |
- |
- |
2.3248 |
34 |
2.9629 |
- |
- |
- |
- |
- |
2.3932 |
35 |
2.7226 |
- |
- |
- |
- |
- |
2.4615 |
36 |
2.4378 |
- |
- |
- |
- |
- |
2.5299 |
37 |
2.7201 |
- |
- |
- |
- |
- |
2.5983 |
38 |
2.6802 |
- |
- |
- |
- |
- |
2.6667 |
39 |
3.1613 |
- |
- |
- |
- |
- |
2.7350 |
40 |
2.9344 |
- |
- |
- |
- |
- |
2.8034 |
41 |
2.5254 |
- |
- |
- |
- |
- |
2.8718 |
42 |
2.5617 |
- |
- |
- |
- |
- |
2.9402 |
43 |
2.459 |
0.3197 |
0.3571 |
0.3640 |
0.2739 |
0.3733 |
3.0085 |
44 |
2.3785 |
- |
- |
- |
- |
- |
3.0769 |
45 |
1.9408 |
- |
- |
- |
- |
- |
3.1453 |
46 |
2.7095 |
- |
- |
- |
- |
- |
3.2137 |
47 |
2.4774 |
- |
- |
- |
- |
- |
3.2821 |
48 |
2.2178 |
- |
- |
- |
- |
- |
3.3504 |
49 |
2.0884 |
- |
- |
- |
- |
- |
3.4188 |
50 |
2.1044 |
- |
- |
- |
- |
- |
3.4872 |
51 |
2.1504 |
- |
- |
- |
- |
- |
3.5556 |
52 |
2.1177 |
- |
- |
- |
- |
- |
3.6239 |
53 |
2.2283 |
- |
- |
- |
- |
- |
3.6923 |
54 |
2.3964 |
- |
- |
- |
- |
- |
3.7607 |
55 |
2.0972 |
- |
- |
- |
- |
- |
3.8291 |
56 |
2.0961 |
- |
- |
- |
- |
- |
3.8974 |
57 |
1.783 |
- |
- |
- |
- |
- |
3.9658 |
58 |
2.1031 |
0.3246 |
0.3533 |
0.3603 |
0.2829 |
0.3687 |
4.0342 |
59 |
1.6699 |
- |
- |
- |
- |
- |
4.1026 |
60 |
1.6675 |
- |
- |
- |
- |
- |
4.1709 |
61 |
2.1672 |
- |
- |
- |
- |
- |
4.2393 |
62 |
1.8881 |
- |
- |
- |
- |
- |
4.3077 |
63 |
1.701 |
- |
- |
- |
- |
- |
4.3761 |
64 |
1.9154 |
- |
- |
- |
- |
- |
4.4444 |
65 |
1.4549 |
- |
- |
- |
- |
- |
4.5128 |
66 |
1.5444 |
- |
- |
- |
- |
- |
4.5812 |
67 |
1.8352 |
- |
- |
- |
- |
- |
4.6496 |
68 |
1.7908 |
- |
- |
- |
- |
- |
4.7179 |
69 |
1.6876 |
- |
- |
- |
- |
- |
4.7863 |
70 |
1.7366 |
- |
- |
- |
- |
- |
4.8547 |
71 |
1.8689 |
- |
- |
- |
- |
- |
4.9231 |
72 |
1.4676 |
- |
- |
- |
- |
- |
4.9915 |
73 |
1.5045 |
0.3170 |
0.3538 |
0.3606 |
0.2829 |
0.3675 |
5.0598 |
74 |
1.2155 |
- |
- |
- |
- |
- |
5.1282 |
75 |
1.4365 |
- |
- |
- |
- |
- |
5.1966 |
76 |
1.7451 |
- |
- |
- |
- |
- |
5.2650 |
77 |
1.4537 |
- |
- |
- |
- |
- |
5.3333 |
78 |
1.3813 |
- |
- |
- |
- |
- |
5.4017 |
79 |
1.4035 |
- |
- |
- |
- |
- |
5.4701 |
80 |
1.3912 |
- |
- |
- |
- |
- |
5.5385 |
81 |
1.3286 |
- |
- |
- |
- |
- |
5.6068 |
82 |
1.5153 |
- |
- |
- |
- |
- |
5.6752 |
83 |
1.6745 |
- |
- |
- |
- |
- |
5.7436 |
84 |
1.4323 |
- |
- |
- |
- |
- |
5.8120 |
85 |
1.5299 |
- |
- |
- |
- |
- |
5.8803 |
86 |
1.488 |
- |
- |
- |
- |
- |
5.9487 |
87 |
1.5195 |
0.3206 |
0.3556 |
0.3530 |
0.2878 |
0.3605 |
6.0171 |
88 |
1.2999 |
- |
- |
- |
- |
- |
6.0855 |
89 |
1.1511 |
- |
- |
- |
- |
- |
6.1538 |
90 |
1.552 |
- |
- |
- |
- |
- |
6.2222 |
91 |
1.35 |
- |
- |
- |
- |
- |
6.2906 |
92 |
1.218 |
- |
- |
- |
- |
- |
6.3590 |
93 |
1.1712 |
- |
- |
- |
- |
- |
6.4274 |
94 |
1.3381 |
- |
- |
- |
- |
- |
6.4957 |
95 |
1.1716 |
- |
- |
- |
- |
- |
6.5641 |
96 |
1.2117 |
- |
- |
- |
- |
- |
6.6325 |
97 |
1.5349 |
- |
- |
- |
- |
- |
6.7009 |
98 |
1.4564 |
- |
- |
- |
- |
- |
6.7692 |
99 |
1.3541 |
- |
- |
- |
- |
- |
6.8376 |
100 |
1.2468 |
- |
- |
- |
- |
- |
6.9060 |
101 |
1.1519 |
- |
- |
- |
- |
- |
6.9744 |
102 |
1.2421 |
0.3150 |
0.3555 |
0.3501 |
0.2858 |
0.3575 |
7.0427 |
103 |
1.0096 |
- |
- |
- |
- |
- |
7.1111 |
104 |
1.1405 |
- |
- |
- |
- |
- |
7.1795 |
105 |
1.2958 |
- |
- |
- |
- |
- |
7.2479 |
106 |
1.35 |
- |
- |
- |
- |
- |
7.3162 |
107 |
1.1291 |
- |
- |
- |
- |
- |
7.3846 |
108 |
0.9968 |
- |
- |
- |
- |
- |
7.4530 |
109 |
1.0454 |
- |
- |
- |
- |
- |
7.5214 |
110 |
1.102 |
- |
- |
- |
- |
- |
7.5897 |
111 |
1.1328 |
- |
- |
- |
- |
- |
7.6581 |
112 |
1.5988 |
- |
- |
- |
- |
- |
7.7265 |
113 |
1.2992 |
- |
- |
- |
- |
- |
7.7949 |
114 |
1.2572 |
- |
- |
- |
- |
- |
7.8632 |
115 |
1.1414 |
- |
- |
- |
- |
- |
7.9316 |
116 |
1.1432 |
- |
- |
- |
- |
- |
8.0 |
117 |
1.1181 |
0.3154 |
0.3545 |
0.3509 |
0.2884 |
0.3578 |
8.0684 |
118 |
0.9365 |
- |
- |
- |
- |
- |
8.1368 |
119 |
1.3286 |
- |
- |
- |
- |
- |
8.2051 |
120 |
1.3711 |
- |
- |
- |
- |
- |
8.2735 |
121 |
1.2001 |
- |
- |
- |
- |
- |
8.3419 |
122 |
1.165 |
- |
- |
- |
- |
- |
8.4103 |
123 |
1.0575 |
- |
- |
- |
- |
- |
8.4786 |
124 |
1.105 |
- |
- |
- |
- |
- |
8.5470 |
125 |
1.077 |
- |
- |
- |
- |
- |
8.6154 |
126 |
1.2217 |
- |
- |
- |
- |
- |
8.6838 |
127 |
1.3254 |
- |
- |
- |
- |
- |
8.7521 |
128 |
1.2165 |
- |
- |
- |
- |
- |
8.8205 |
129 |
1.3021 |
- |
- |
- |
- |
- |
8.8889 |
130 |
1.0927 |
- |
- |
- |
- |
- |
8.9573 |
131 |
1.3961 |
0.3150 |
0.3540 |
0.3490 |
0.2882 |
0.3588 |
9.0256 |
132 |
1.0779 |
- |
- |
- |
- |
- |
9.0940 |
133 |
0.901 |
- |
- |
- |
- |
- |
9.1624 |
134 |
1.313 |
- |
- |
- |
- |
- |
9.2308 |
135 |
1.1409 |
- |
- |
- |
- |
- |
9.2991 |
136 |
1.1635 |
- |
- |
- |
- |
- |
9.3675 |
137 |
1.0244 |
- |
- |
- |
- |
- |
9.4359 |
138 |
1.0576 |
- |
- |
- |
- |
- |
9.5043 |
139 |
1.0101 |
- |
- |
- |
- |
- |
9.5726 |
140 |
1.1516 |
0.3152 |
0.3561 |
0.3485 |
0.2877 |
0.3574 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}