metadata
license: apache-2.0
Cross-Encoder for Hallucination Detection
This model was trained using SentenceTransformers Cross-Encoder class. This model is based on microsoft/deberta-v3-base.
Training Data
The model was trained on the NLI data and a variety of datasets evaluating summarization accuracy for factual consistency, including FEVER, Vitamin C and PAWS.
Performance
- TRUE Dataset (Minus Vitamin C, FEVER and PAWS) - 0.872 AUC Score
- SummaC Benchmark (Test Split) - 0.764 Balanced Accuracy, 0.831 AUC Score
- AnyScale Ranking Test for Hallucinations - 86.6 % Accuracy
Usage
The model can be used like this:
from sentence_transformers import CrossEncoder
model = CrossEncoder('vectara/hallucination_evaluation_model')
model.predict([
["A man walks into a bar and buys a drink", "A bloke swigs alcohol at a pub"],
["A person on a horse jumps over a broken down airplane.", "A person is at a diner, ordering an omelette."],
["A person on a horse jumps over a broken down airplane.", "A person is outdoors, on a horse."],
["A boy is jumping on skateboard in the middle of a red bridge.", "The boy skates down the sidewalk on a blue bridge"],
["A man with blond-hair, and a brown shirt drinking out of a public water fountain.", "A blond drinking water in public."],
["A man with blond-hair, and a brown shirt drinking out of a public water fountain.", "A blond man wearing a brown shirt is reading a book."],
["Mark Wahlberg was a fan of Manny.", "Manny was a fan of Mark Wahlberg."],
])
This returns a numpy array:
array([6.1051559e-01, 4.7493709e-04, 9.9639291e-01, 2.1221573e-04, 9.9599433e-01, 1.4127002e-03, 2.8262993e-03], dtype=float32)
Usage with Transformers AutoModel
You can use the model also directly with Transformers library (without SentenceTransformers library):
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('vectara/hallucination_evaluation_model')
tokenizer = AutoTokenizer.from_pretrained('vectara/hallucination_evaluation_model')
pairs = [
["A man walks into a bar and buys a drink", "A bloke swigs alcohol at a pub"],
["A person on a horse jumps over a broken down airplane.", "A person is at a diner, ordering an omelette."],
["A person on a horse jumps over a broken down airplane.", "A person is outdoors, on a horse."],
["A boy is jumping on skateboard in the middle of a red bridge.", "The boy skates down the sidewalk on a blue bridge"],
["A man with blond-hair, and a brown shirt drinking out of a public water fountain.", "A blond drinking water in public."],
["A man with blond-hair, and a brown shirt drinking out of a public water fountain.", "A blond man wearing a brown shirt is reading a book."],
["Mark Wahlberg was a fan of Manny.", "Manny was a fan of Mark Wahlberg."],
]
inputs = tokenizer.batch_encode_plus(pairs, return_tensors='pt', padding=True)
model.eval()
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits.cpu().detach().numpy()
scores = 1 / (1 + np.exp(-logits)).flatten()
This returns a numpy array:
array([6.1051559e-01, 4.7493709e-04, 9.9639291e-01, 2.1221573e-04, 9.9599433e-01, 1.4127002e-03, 2.8262993e-03], dtype=float32)