distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9997
- Accuracy: {'accuracy': 0.882}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.3444 | {'accuracy': 0.888} |
0.4135 | 2.0 | 500 | 0.4854 | {'accuracy': 0.887} |
0.4135 | 3.0 | 750 | 0.6411 | {'accuracy': 0.882} |
0.2383 | 4.0 | 1000 | 0.6366 | {'accuracy': 0.891} |
0.2383 | 5.0 | 1250 | 0.7062 | {'accuracy': 0.891} |
0.1144 | 6.0 | 1500 | 0.7646 | {'accuracy': 0.882} |
0.1144 | 7.0 | 1750 | 0.9373 | {'accuracy': 0.884} |
0.0176 | 8.0 | 2000 | 1.0347 | {'accuracy': 0.884} |
0.0176 | 9.0 | 2250 | 0.9923 | {'accuracy': 0.883} |
0.0188 | 10.0 | 2500 | 0.9997 | {'accuracy': 0.882} |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for vedica1011/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased