metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: outputs
results: []
outputs
This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1589
- Accuracy: 0.7087
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9514 | 1.0 | 682 | 0.7259 | 0.6708 |
0.7117 | 2.0 | 1364 | 0.8181 | 0.6914 |
0.3928 | 3.0 | 2046 | 0.9012 | 0.7137 |
0.2582 | 4.0 | 2728 | 1.1589 | 0.7087 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1