layoutlm-funsd / README.md
venneladondapati's picture
End of training
483cd48
|
raw
history blame
9.32 kB
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6878
  • Answer: {'precision': 0.7163198247535597, 'recall': 0.8084054388133498, 'f1': 0.7595818815331011, 'number': 809}
  • Header: {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119}
  • Question: {'precision': 0.7820738137082601, 'recall': 0.8356807511737089, 'f1': 0.8079891057648662, 'number': 1065}
  • Overall Precision: 0.7264
  • Overall Recall: 0.7938
  • Overall F1: 0.7586
  • Overall Accuracy: 0.8119

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.791 1.0 10 1.5434 {'precision': 0.02383134738771769, 'recall': 0.032138442521631644, 'f1': 0.027368421052631577, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.1517094017094017, 'recall': 0.13333333333333333, 'f1': 0.14192903548225888, 'number': 1065} 0.0829 0.0843 0.0836 0.4089
1.4241 2.0 20 1.2209 {'precision': 0.21506682867557717, 'recall': 0.21878862793572312, 'f1': 0.21691176470588236, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5193014705882353, 'recall': 0.5305164319248826, 'f1': 0.5248490478402229, 'number': 1065} 0.3883 0.3723 0.3801 0.6071
1.0737 3.0 30 0.9131 {'precision': 0.5521920668058455, 'recall': 0.65389369592089, 'f1': 0.5987549518958688, 'number': 809} {'precision': 0.10526315789473684, 'recall': 0.03361344537815126, 'f1': 0.050955414012738856, 'number': 119} {'precision': 0.6549912434325744, 'recall': 0.7023474178403756, 'f1': 0.6778432260987766, 'number': 1065} 0.5992 0.6427 0.6202 0.7260
0.8315 4.0 40 0.7824 {'precision': 0.5840297121634169, 'recall': 0.7775030902348579, 'f1': 0.6670201484623542, 'number': 809} {'precision': 0.16, 'recall': 0.06722689075630252, 'f1': 0.09467455621301775, 'number': 119} {'precision': 0.6850044365572315, 'recall': 0.7248826291079812, 'f1': 0.7043795620437956, 'number': 1065} 0.6251 0.7070 0.6635 0.7595
0.6888 5.0 50 0.7225 {'precision': 0.6345945945945946, 'recall': 0.7255871446229913, 'f1': 0.6770472895040369, 'number': 809} {'precision': 0.2631578947368421, 'recall': 0.16806722689075632, 'f1': 0.20512820512820512, 'number': 119} {'precision': 0.7260397830018083, 'recall': 0.7539906103286385, 'f1': 0.7397512666973746, 'number': 1065} 0.6692 0.7075 0.6878 0.7735
0.5828 6.0 60 0.6844 {'precision': 0.6371951219512195, 'recall': 0.7750309023485785, 'f1': 0.6993865030674846, 'number': 809} {'precision': 0.2716049382716049, 'recall': 0.18487394957983194, 'f1': 0.22, 'number': 119} {'precision': 0.6926196269261963, 'recall': 0.8018779342723005, 'f1': 0.7432550043516102, 'number': 1065} 0.6540 0.7541 0.7005 0.7860
0.5049 7.0 70 0.6662 {'precision': 0.6692056583242655, 'recall': 0.7601977750309024, 'f1': 0.7118055555555556, 'number': 809} {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119} {'precision': 0.7250213492741246, 'recall': 0.7971830985915493, 'f1': 0.759391771019678, 'number': 1065} 0.6830 0.7481 0.7141 0.7889
0.456 8.0 80 0.6507 {'precision': 0.6635610766045549, 'recall': 0.792336217552534, 'f1': 0.7222535211267606, 'number': 809} {'precision': 0.225, 'recall': 0.226890756302521, 'f1': 0.22594142259414227, 'number': 119} {'precision': 0.730899830220713, 'recall': 0.8084507042253521, 'f1': 0.7677218011591618, 'number': 1065} 0.6754 0.7672 0.7183 0.7962
0.3999 9.0 90 0.6468 {'precision': 0.6928034371643395, 'recall': 0.7972805933250927, 'f1': 0.7413793103448275, 'number': 809} {'precision': 0.25, 'recall': 0.24369747899159663, 'f1': 0.24680851063829787, 'number': 119} {'precision': 0.7611548556430446, 'recall': 0.8169014084507042, 'f1': 0.7880434782608696, 'number': 1065} 0.7050 0.7747 0.7382 0.8029
0.3618 10.0 100 0.6543 {'precision': 0.7033805888767721, 'recall': 0.7972805933250927, 'f1': 0.7473928157589804, 'number': 809} {'precision': 0.2689075630252101, 'recall': 0.2689075630252101, 'f1': 0.2689075630252101, 'number': 119} {'precision': 0.7706502636203867, 'recall': 0.8234741784037559, 'f1': 0.7961870177031322, 'number': 1065} 0.7148 0.7797 0.7459 0.8043
0.3279 11.0 110 0.6608 {'precision': 0.7040704070407041, 'recall': 0.7911001236093943, 'f1': 0.7450523864959255, 'number': 809} {'precision': 0.2773109243697479, 'recall': 0.2773109243697479, 'f1': 0.2773109243697479, 'number': 119} {'precision': 0.7676855895196506, 'recall': 0.8253521126760563, 'f1': 0.7954751131221719, 'number': 1065} 0.7142 0.7787 0.7451 0.8092
0.3085 12.0 120 0.6735 {'precision': 0.7003222341568206, 'recall': 0.8059332509270705, 'f1': 0.7494252873563217, 'number': 809} {'precision': 0.3076923076923077, 'recall': 0.3025210084033613, 'f1': 0.30508474576271183, 'number': 119} {'precision': 0.772609819121447, 'recall': 0.8422535211267606, 'f1': 0.8059299191374663, 'number': 1065} 0.7175 0.7953 0.7544 0.8084
0.2933 13.0 130 0.6795 {'precision': 0.7088331515812432, 'recall': 0.8034610630407911, 'f1': 0.7531865585168018, 'number': 809} {'precision': 0.2867647058823529, 'recall': 0.3277310924369748, 'f1': 0.30588235294117644, 'number': 119} {'precision': 0.7782764811490126, 'recall': 0.8140845070422535, 'f1': 0.7957778797613584, 'number': 1065} 0.7180 0.7807 0.7481 0.8099
0.2742 14.0 140 0.6836 {'precision': 0.7133550488599348, 'recall': 0.8121137206427689, 'f1': 0.7595375722543352, 'number': 809} {'precision': 0.3064516129032258, 'recall': 0.31932773109243695, 'f1': 0.31275720164609055, 'number': 119} {'precision': 0.784, 'recall': 0.828169014084507, 'f1': 0.8054794520547947, 'number': 1065} 0.7267 0.7913 0.7576 0.8115
0.2699 15.0 150 0.6878 {'precision': 0.7163198247535597, 'recall': 0.8084054388133498, 'f1': 0.7595818815331011, 'number': 809} {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119} {'precision': 0.7820738137082601, 'recall': 0.8356807511737089, 'f1': 0.8079891057648662, 'number': 1065} 0.7264 0.7938 0.7586 0.8119

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3