veronica-girolimetti's picture
End of training
989c14f
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-summarization-headers-50-epochs
    results: []

t5-summarization-headers-50-epochs

This model is a fine-tuned version of google/flan-t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2125
  • Rouge: {'rouge1': 0.4117, 'rouge2': 0.2163, 'rougeL': 0.2158, 'rougeLsum': 0.2158}
  • Bert Score: 0.8818
  • Bleurt 20: -0.8026
  • Gen Len: 14.46

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 7
  • eval_batch_size: 7
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge Bert Score Bleurt 20 Gen Len
3.0256 1.0 186 2.6300 {'rouge1': 0.4643, 'rouge2': 0.1902, 'rougeL': 0.1973, 'rougeLsum': 0.1973} 0.8664 -0.8801 15.55
2.734 2.0 372 2.4218 {'rouge1': 0.4489, 'rouge2': 0.2037, 'rougeL': 0.209, 'rougeLsum': 0.209} 0.8737 -0.8686 14.995
2.5147 3.0 558 2.3219 {'rouge1': 0.4363, 'rouge2': 0.1984, 'rougeL': 0.2067, 'rougeLsum': 0.2067} 0.8742 -0.8762 14.69
2.3007 4.0 744 2.2752 {'rouge1': 0.4465, 'rouge2': 0.2043, 'rougeL': 0.2022, 'rougeLsum': 0.2022} 0.8761 -0.8603 14.625
2.1922 5.0 930 2.2331 {'rouge1': 0.425, 'rouge2': 0.2033, 'rougeL': 0.2042, 'rougeLsum': 0.2042} 0.8779 -0.829 14.87
2.1185 6.0 1116 2.2092 {'rouge1': 0.4231, 'rouge2': 0.2096, 'rougeL': 0.2073, 'rougeLsum': 0.2073} 0.8783 -0.8359 14.68
2.0584 7.0 1302 2.1993 {'rouge1': 0.4302, 'rouge2': 0.2114, 'rougeL': 0.2126, 'rougeLsum': 0.2126} 0.8793 -0.8202 15.015
2.0189 8.0 1488 2.1872 {'rouge1': 0.4255, 'rouge2': 0.2086, 'rougeL': 0.2106, 'rougeLsum': 0.2106} 0.879 -0.8359 14.485
1.8933 9.0 1674 2.1967 {'rouge1': 0.4307, 'rouge2': 0.2175, 'rougeL': 0.2165, 'rougeLsum': 0.2165} 0.8821 -0.7803 14.865
1.8859 10.0 1860 2.1905 {'rouge1': 0.4342, 'rouge2': 0.2139, 'rougeL': 0.2193, 'rougeLsum': 0.2193} 0.8828 -0.7683 14.93
1.8395 11.0 2046 2.2006 {'rouge1': 0.42, 'rouge2': 0.2135, 'rougeL': 0.2175, 'rougeLsum': 0.2175} 0.8815 -0.7958 14.485
1.7848 12.0 2232 2.1970 {'rouge1': 0.4309, 'rouge2': 0.2096, 'rougeL': 0.2171, 'rougeLsum': 0.2171} 0.8826 -0.8131 14.51
1.7855 13.0 2418 2.2026 {'rouge1': 0.4218, 'rouge2': 0.2099, 'rougeL': 0.2182, 'rougeLsum': 0.2182} 0.8812 -0.8068 14.555
1.6971 14.0 2604 2.2006 {'rouge1': 0.4035, 'rouge2': 0.2056, 'rougeL': 0.2109, 'rougeLsum': 0.2109} 0.8816 -0.817 14.145
1.7226 15.0 2790 2.2000 {'rouge1': 0.413, 'rouge2': 0.2072, 'rougeL': 0.2145, 'rougeLsum': 0.2145} 0.8818 -0.8106 14.415
1.7164 16.0 2976 2.2067 {'rouge1': 0.4117, 'rouge2': 0.212, 'rougeL': 0.215, 'rougeLsum': 0.215} 0.8815 -0.8198 14.235
1.6908 17.0 3162 2.2061 {'rouge1': 0.4125, 'rouge2': 0.2193, 'rougeL': 0.2154, 'rougeLsum': 0.2154} 0.8814 -0.8089 14.37
1.6865 18.0 3348 2.2088 {'rouge1': 0.4125, 'rouge2': 0.2173, 'rougeL': 0.217, 'rougeLsum': 0.217} 0.8819 -0.807 14.46
1.6225 19.0 3534 2.2127 {'rouge1': 0.4111, 'rouge2': 0.2161, 'rougeL': 0.2123, 'rougeLsum': 0.2123} 0.8815 -0.8039 14.425
1.6304 20.0 3720 2.2125 {'rouge1': 0.4117, 'rouge2': 0.2163, 'rougeL': 0.2158, 'rougeLsum': 0.2158} 0.8818 -0.8026 14.46

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0