Edit model card

t5-summarization-one-shot-better-prompt

This model is a fine-tuned version of google/flan-t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4802
  • Rouge: {'rouge1': 37.3827, 'rouge2': 17.5806, 'rougeL': 20.1333, 'rougeLsum': 20.1333}
  • Bert Score: 0.881
  • Bleurt 20: -0.8056
  • Gen Len: 13.305

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 7
  • eval_batch_size: 7
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge Bert Score Bleurt 20 Gen Len
2.8911 1.0 172 2.6479 {'rouge1': 44.1146, 'rouge2': 17.635, 'rougeL': 19.7288, 'rougeLsum': 19.7288} 0.8758 -0.8151 14.79
2.7068 2.0 344 2.5580 {'rouge1': 42.4931, 'rouge2': 18.5074, 'rougeL': 19.757, 'rougeLsum': 19.757} 0.8774 -0.8319 14.025
2.4884 3.0 516 2.5123 {'rouge1': 43.5811, 'rouge2': 19.0798, 'rougeL': 20.1143, 'rougeLsum': 20.1143} 0.8794 -0.7737 14.455
2.3827 4.0 688 2.4875 {'rouge1': 42.0721, 'rouge2': 18.4704, 'rougeL': 20.0131, 'rougeLsum': 20.0131} 0.8801 -0.7754 14.175
2.345 5.0 860 2.4596 {'rouge1': 43.7021, 'rouge2': 20.0234, 'rougeL': 20.0962, 'rougeLsum': 20.0962} 0.8809 -0.7379 14.325
2.2438 6.0 1032 2.4466 {'rouge1': 41.0624, 'rouge2': 18.8098, 'rougeL': 19.8672, 'rougeLsum': 19.8672} 0.8803 -0.7893 13.565
2.1878 7.0 1204 2.4505 {'rouge1': 40.3802, 'rouge2': 18.9902, 'rougeL': 20.1633, 'rougeLsum': 20.1633} 0.88 -0.7735 13.26
2.084 8.0 1376 2.4384 {'rouge1': 38.4615, 'rouge2': 18.3148, 'rougeL': 19.61, 'rougeLsum': 19.61} 0.8802 -0.7813 13.235
2.096 9.0 1548 2.4380 {'rouge1': 38.9264, 'rouge2': 18.2137, 'rougeL': 19.7464, 'rougeLsum': 19.7464} 0.8794 -0.8013 13.18
2.0251 10.0 1720 2.4445 {'rouge1': 36.7486, 'rouge2': 17.2998, 'rougeL': 20.0546, 'rougeLsum': 20.0546} 0.8807 -0.8057 12.97
2.0139 11.0 1892 2.4449 {'rouge1': 38.374, 'rouge2': 18.4603, 'rougeL': 20.3794, 'rougeLsum': 20.3794} 0.88 -0.7885 13.415
1.957 12.0 2064 2.4502 {'rouge1': 38.5085, 'rouge2': 18.9339, 'rougeL': 20.2576, 'rougeLsum': 20.2576} 0.8812 -0.7956 13.24
1.8508 13.0 2236 2.4510 {'rouge1': 37.1308, 'rouge2': 17.4541, 'rougeL': 19.7904, 'rougeLsum': 19.7904} 0.8802 -0.7981 13.28
1.9315 14.0 2408 2.4590 {'rouge1': 37.1896, 'rouge2': 17.8766, 'rougeL': 20.0, 'rougeLsum': 20.0} 0.8813 -0.7869 13.205
1.8447 15.0 2580 2.4635 {'rouge1': 38.7071, 'rouge2': 18.5335, 'rougeL': 20.5302, 'rougeLsum': 20.5302} 0.8813 -0.7887 13.505
1.8488 16.0 2752 2.4643 {'rouge1': 38.0242, 'rouge2': 17.8906, 'rougeL': 20.3013, 'rougeLsum': 20.3013} 0.8818 -0.7789 13.23
1.7909 17.0 2924 2.4739 {'rouge1': 37.1561, 'rouge2': 17.7929, 'rougeL': 20.0763, 'rougeLsum': 20.0763} 0.8806 -0.7882 13.22
1.8615 18.0 3096 2.4770 {'rouge1': 37.2891, 'rouge2': 17.6695, 'rougeL': 19.951, 'rougeLsum': 19.951} 0.8803 -0.8131 13.305
1.7938 19.0 3268 2.4796 {'rouge1': 37.1339, 'rouge2': 17.6046, 'rougeL': 20.1063, 'rougeLsum': 20.1063} 0.881 -0.8031 13.26
1.7814 20.0 3440 2.4802 {'rouge1': 37.3827, 'rouge2': 17.5806, 'rougeL': 20.1333, 'rougeLsum': 20.1333} 0.881 -0.8056 13.305

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
1
Safetensors
Model size
77M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for veronica-girolimetti/t5-summarization-one-shot-better-prompt

Finetuned
(297)
this model