|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: test-dialogue-summarization |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test-dialogue-summarization |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3848 |
|
- Rouge: {'rouge1': 45.6704, 'rouge2': 21.245, 'rougeL': 20.2411, 'rougeLsum': 20.2411} |
|
- Bert Score: 0.8718 |
|
- Bleurt 20: -0.8946 |
|
- Gen Len: 14.99 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 7 |
|
- eval_batch_size: 7 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge | Bert Score | Bleurt 20 | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------:|:----------:|:---------:|:-------:| |
|
| 2.2971 | 1.0 | 186 | 2.4618 | {'rouge1': 46.8614, 'rouge2': 21.2026, 'rougeL': 20.3766, 'rougeLsum': 20.3766} | 0.8719 | -0.8804 | 15.38 | |
|
| 2.5384 | 2.0 | 372 | 2.4062 | {'rouge1': 46.4924, 'rouge2': 21.6223, 'rougeL': 20.304, 'rougeLsum': 20.304} | 0.8724 | -0.8819 | 15.145 | |
|
| 2.5224 | 3.0 | 558 | 2.3936 | {'rouge1': 46.0775, 'rouge2': 21.2642, 'rougeL': 20.3148, 'rougeLsum': 20.3148} | 0.871 | -0.8905 | 15.345 | |
|
| 2.4661 | 4.0 | 744 | 2.3867 | {'rouge1': 45.6718, 'rouge2': 21.122, 'rougeL': 20.2877, 'rougeLsum': 20.2877} | 0.8719 | -0.8887 | 14.975 | |
|
| 2.4426 | 5.0 | 930 | 2.3848 | {'rouge1': 45.6704, 'rouge2': 21.245, 'rougeL': 20.2411, 'rougeLsum': 20.2411} | 0.8718 | -0.8946 | 14.99 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|