versae's picture
update model card README.md
382fd99
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: roberta-base-bne-finetuned-recores2
    results: []

roberta-base-bne-finetuned-recores2

This model is a fine-tuned version of PlanTL-GOB-ES/roberta-base-bne on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 8.9761
  • Accuracy: 0.3113

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6094 1.0 1047 1.6094 0.2259
1.6094 2.0 2094 1.6094 0.2121
1.6094 3.0 3141 1.6094 0.2314
1.6094 4.0 4188 1.6094 0.1956
1.6094 5.0 5235 1.6094 0.2121
1.6121 6.0 6282 1.6094 0.1818
1.6094 7.0 7329 1.6094 0.2259
1.6092 8.0 8376 1.6094 0.1736
1.6094 9.0 9423 1.6094 0.1956
1.6094 10.0 10470 1.6094 0.1736
1.6094 11.0 11517 1.6094 0.1983
1.6094 12.0 12564 1.6094 0.2176
1.6094 13.0 13611 1.6094 0.1928
1.6096 14.0 14658 1.6094 0.1846
1.6145 15.0 15705 1.6094 0.2066
1.6094 16.0 16752 1.6022 0.2121
1.8471 17.0 17799 1.6101 0.1763
2.8148 18.0 18846 2.7585 0.2452
2.5445 19.0 19893 2.4576 0.2920
1.9972 20.0 20940 3.6002 0.2865
1.9844 21.0 21987 5.3809 0.3168
2.849 22.0 23034 7.2230 0.3140
1.4208 23.0 24081 8.0602 0.2975
0.4045 24.0 25128 8.2947 0.3058
0.3052 25.0 26175 8.9761 0.3113

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1