|
Note that this model does not work directly with HF, a modification that does mean pooling before the layernorm and classification head is needed. |
|
|
|
|
|
```python |
|
from transformers import ( |
|
ViTForImageClassification, |
|
pipeline, |
|
AutoImageProcessor, |
|
ViTConfig, |
|
ViTModel, |
|
) |
|
|
|
from transformers.modeling_outputs import ( |
|
ImageClassifierOutput, |
|
BaseModelOutputWithPooling, |
|
) |
|
|
|
from PIL import Image |
|
import torch |
|
from torch import nn |
|
from typing import Optional, Union, Tuple |
|
|
|
|
|
class CustomViTModel(ViTModel): |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
interpolate_pos_encoding: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
""" |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape bsz x n_heads x N x N |
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] |
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] |
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
# TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) |
|
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype |
|
if pixel_values.dtype != expected_dtype: |
|
pixel_values = pixel_values.to(expected_dtype) |
|
|
|
embedding_output = self.embeddings( |
|
pixel_values, |
|
bool_masked_pos=bool_masked_pos, |
|
interpolate_pos_encoding=interpolate_pos_encoding, |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = sequence_output[:, 1:, :].mean(dim=1) |
|
|
|
sequence_output = self.layernorm(sequence_output) |
|
pooled_output = ( |
|
self.pooler(sequence_output) if self.pooler is not None else None |
|
) |
|
|
|
if not return_dict: |
|
head_outputs = ( |
|
(sequence_output, pooled_output) |
|
if pooled_output is not None |
|
else (sequence_output,) |
|
) |
|
return head_outputs + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class CustomViTForImageClassification(ViTForImageClassification): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.vit = CustomViTModel(config, add_pooling_layer=False) |
|
|
|
# Classifier head |
|
self.classifier = ( |
|
nn.Linear(config.hidden_size, config.num_labels) |
|
if config.num_labels > 0 |
|
else nn.Identity() |
|
) |
|
|
|
# Initialize weights and apply final processing |
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
interpolate_pos_encoding: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, ImageClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.vit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
interpolate_pos_encoding=interpolate_pos_encoding, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
|
|
return ImageClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
if __name__ == "__main__": |
|
|
|
model = CustomViTForImageClassification.from_pretrained("vesteinn/vit-mae-inat21") |
|
image_processor = AutoImageProcessor.from_pretrained("vesteinn/vit-mae-inat21") |
|
|
|
classifier = pipeline( |
|
"image-classification", model=model, image_processor=image_processor |
|
) |
|
``` |