vgarg's picture
Add SetFit model
a743da7 verified
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
base_model: intfloat/multilingual-e5-large
metrics:
  - accuracy
widget:
  - text: What should be Ideal Promo Duration?
  - text: Compare the performance of top skus
  - text: What is my Forward Buying across Brands?
  - text: 'Which Packs segments are being cannibalized the most by xx '
  - text: What price point is vacant in xx?
pipeline_tag: text-classification
inference: true
model-index:
  - name: SetFit with intfloat/multilingual-e5-large
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.95
            name: Accuracy

SetFit with intfloat/multilingual-e5-large

This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-large as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • 'Which promotion type is giving better returns ?'
  • 'Tell me the best performing promotions for xx'
  • 'Which SKUs in each brand need to be promoted more?'
0
  • 'Tell me the top 10 SKUs in xx'
  • 'what are the volume and value market share of xx in yy Category in zz?'
  • 'Which brands are most elastic in xx for yy?'

Evaluation

Metrics

Label Accuracy
all 0.95

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vgarg/usecase_classifier_large_17_04_24")
# Run inference
preds = model("What price point is vacant in xx?")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 11.15 19
Label Training Sample Count
0 20
1 20

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.01 1 0.3409 -
0.5 50 0.0012 -
1.0 100 0.0002 -
1.5 150 0.0001 -
2.0 200 0.0001 -
2.5 250 0.0001 -
3.0 300 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.40.0
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}